
Hidden Markov Models

Adapted from slides by Steven Bedrick (OHSU)
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Formally, an HMM is fully described as:

A set of N hidden states

A transition probability matrix giving the 
probabilities of going from state i to j

A sequence of T observations

A set of observation likelihoods (aka 
emission probabilities) of observation ot 

being generated from state bi.

Special start and stop states, together 
with transition probabilities          .

A = a11a12...an1...ann

O = o1o2...oT

B = bi(ot)

q0, qF a01...

Q = q1, q2, q3...qn
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There are three fundamental kinds of questions that 
we can ask with an HMM:

1. Likelihood: Given an HMM, how likely is a given 
observation sequence? 

2. Decoding: Given an observation sequence and a fully-
specified HMM, what is the most likely sequence of states to 
have produced that observation? 

3. Learning: Given an observation sequence and a set of 
states, what are the likely transition and emission 
probabilities (A and B)?
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We will steal an example 
from Jason Eisner.

Jason Eisner 
??? – Present

It is 2799; you are a climatologist studying the 
history of global warming.

Following the Zombie Apocalypse of 2325, all 
records of 20th-century weather were destroyed...

Eisner, J. 2002. An interactive spreadsheet for teaching the forward-backward algorithm. In ACL Workshop on Effective Tools and Methodologies 
for Teaching NLP and CL, pages 10–18.  21



... however, archaeologists excavating the ruins of 
Baltimore recently discovered Jason’s diary...

... in which he obsessively recorded how often he 
ate ice cream over the summer of 2002.
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We can infer that the weather influenced how much 
ice cream Jason ate on any given day.

An HMM will let us model the situation:
Observed variable: Ice cream consumption

Hidden variable: Weather

Let’s simplify things and say that there are two kinds of weather (“hot” 
and “cold”), and that he either ate 1, 2, or 3 units of ice cream per day.

We can further infer that today’s weather is at least 
somehow related to yesterday’s weather.
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Hot Cold

Hot 0.7 0.3

Cold 0.4 0.6
A:

1 2 3

Hot 0.2 0.4 0.4

Cold 0.5 0.4 0.1
B:

Transition matrix

Start

Hot 0.8

Cold 0.2

a0,Hot/Cold:

Emission matrix
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We can represent parts of the using WFSTs!

Hot Cold

Hot 0.7 0.3

Cold 0.4 0.6
A:

1 2 3

Hot 0.2 0.4 0.4

Cold 0.5 0.4 0.1
B:

Hot Cold

p(cold|cold)

p(hot|hot)

p(hot|cold)

p(cold|hot)

Transition matrix Emission matrix

0

1
<eps>:H/0.8 p(H|start)

2

<eps>:C/0.2 p(C|start)

3

1:<eps>/0.2 p(1|H)

2:<eps>/0.4 p(2|H)

3:<eps>/0.4 p(3|H)

4

1:<eps>/0.5 p(1|C)

2:<eps>/0.4 p(2|C)

3:<eps>/0.1 p(3|C)

<eps>:H/0.7 p(H|H)

<eps>:C/0.3 p(C|H)

<eps>:H/0.4 p(H|C)

<eps>:C/0.6 p(C|C)
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A note about starting and stopping conditions:

Start

Hot 0.8

Cold 0.2

a0,Hot/Cold:

In this example, we know a priori that the journal is from the summer 
months, so P(Hot) is higher than P(Cold). 

We don’t have any reason to believe that the weather affected when 
Jason stopped his diary, so the stop probabilities are identical.

Can you think of an HMM problem where they might not be?  
(Hint: think POS tagging)
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There are three fundamental kinds of questions that 
we can ask with an HMM:

1. Likelihood: Given a sequence of states, what is the most 
likely observed sequence? or; how likely is a given 
observation sequence? 

2. Decoding: Given an observation sequence and a fully-
specified HMM, what is the most likely sequence of states to 
have produced that observation? 

3. Learning: Given an observation sequence and a set of 
states, what are the likely transition and emission 
probabilities (A and B)?
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Let’s say we have a sequence of diary entries:

P (O|Q) =
TY

i=1

P (oi|qi)

O = 3, 1, 3

Q = hot, hot, cold

How likely is this sequence given the model 
described earlier?

We start with a simpler problem: calculating the 
probability of a specific observation/state sequence pair. 

P (3, 1, 3|h, h, c) = P (3|h)⇥ P (1|h)⇥ P (3|c)

q0 h h c qf

3 31

P (O|�)
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But that’s not the full story, since Q itself is only one 
of many sequences our machine can generate. So: 

P (O|Q) =
TY

i=1

P (oi|qi)

O = 3, 1, 3
Q = hot, hot, cold

P (3, 1, 3|h, h, c) = P (3|h)⇥ P (1|h)⇥ P (3|c)

P (O,Q) = P (O|Q)⇥ P (Q) =
nY

i=1

P (oi|qi)⇥
nY

i=1

P (qi|qi�1)

P ([3, 1, 3], [h, h, c]) = ⇥P (3|h)⇥ P (1|h)⇥ P (3|c)
P (h|start)⇥ P (h|h)⇥ P (c|h)
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Now that we can find out the joint probability of an 
observation and a given state sequence...

... we know how to find the probability of the 
observation itself:

P (O) =
X

Q

P (O,Q) =
X

Q

P (O|Q)P (Q)

Intuition: the probability of an observation is the sum 
of the probabilities of all the different ways for the 
model to generate that observation.

P (3, 1, 3) = P ([3, 1, 3], [h, h, h]) + P ([3, 1, 3], [h, h, c])+

P ([3, 1, 3], [h, c, h]) + P ([3, 1, 3], [c, h, h])...
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P (O) =
X

Q

P (O,Q) =
X

Q

P (O|Q)P (Q)

Problem: for N states and T observations, calculating 
P(O) in this way is O(NT).

Often, N and T are large!*

*Not that they have to be very large in order to cause problems! 
20 states, 10 observations = tens of trillions of calculations.

Instead, we can use the O(N2T) forward algorithm to 
compute P(O).

This is a simple instance of dynamic programming!
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The key insight: build a trellis that keeps track of the 
probabilities of different paths through the machine.

This is represented by a T (# of states) by N (# of 
observations) matrix α.

Each αt(j) represents the probability of the machine 
being in state j given the first t observations 
(“forward probability”).

Formally: ↵t(j) = P (o1, o2...ot, qt = j|�)

qt = j: “the tth state in the sequence is state j”
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Calculating                                           is fairly 
straightforward:

↵t(j) = P (o1, o2...ot, qt = j|�)

↵t(j) =
NX

i=1

↵t�1(i)aijbj(ot)
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Calculating                                           is fairly 
straightforward:

↵t(j) = P (o1, o2...ot, qt = j|�)

Emission likelihood for 
symbol ot given current 
state j

Transition prob. from 
previous state i to current 
state j

Previous time step’s forward 
probability for state i

↵t(j) =
NX

i=1

↵t�1(i)aijbj(ot)

For each possible 
hidden state…
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H

C

Start

End

H

C

Start

End

H

C

Start

End

H

C

Start

3 1 3

qf

q2

q1

q0

O1 O2 O3

P(
H

|st
ar

t) 
* P

(3
|H

)

0.
8 

* 0
.4

P(C|sta
rt) 

* P
(3|C)

0.2 * 0
.1

α1(2) = 0.32

α1(1) = 0.02

P(H|H) * P(1|H)
0.7 * 0.2

P(H
|C) * 

P(1|H
)

0.4 * 0
.2

α2(2) = 0.32 * 0.14 + 0.02 * 0.08 
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α1(1) = 0.02

P(C|C) * P(1|C)
0.4 * 0.5

P(C|H) * P(1|C)
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α2(2) = 0.0464
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a 1
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a 2
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αT = α3(1)*P(a1F) + α3(2)*P(a2F)

α2(1) = 0.052

α3(2) = 0.0213

α3(1) = 0.004512

α2(2) = 0.0464
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α2(2) = 0.0464
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P(
a 1
F)
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a 2
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α2(1) = 0.052

α3(2) = 0.0213

αT = 0.0130

α2(2) = 0.0464

α3(1) = 0.004512
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There are three fundamental kinds of questions that 
we can ask with an HMM:

1. Likelihood: Given a sequence of states, what is the most 
likely observed sequence? or; how likely is a given 
observation sequence? 

2. Decoding: Given an observation sequence and a fully-
specified HMM, what is the most likely sequence of states to 
have produced that observation? 

3. Learning: Given an observation sequence and a set of 
states, what are the likely transition and emission 
probabilities (A and B)?
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There are three fundamental kinds of questions that 
we can ask with an HMM:

1. Likelihood: Given a sequence of states, what is the most 
likely observed sequence? or; how likely is a given 
observation sequence? 

2. Decoding: Given an observation sequence and a fully-
specified HMM, what is the most likely sequence of states to 
have produced that observation? 

3. Learning: Given an observation sequence and a set of 
states, what are the likely transition and emission 
probabilities (A and B)?
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Decoding and likelihood estimation have certain 
similarities...

Formally: argmax
Q

P (Q|O)

“Given an observation O, what was the most 
probable sequence of states Q?”

One solution: run the forward algorithm over each 
possible state sequence...

... which has the same issue as the naïve solution to 
the likelihood problem! 

O(NT) possible 
solutions...
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Decoding and likelihood estimation have the same 
problems...

... and they share a solution. 

Modifying the forward algorithm slightly gives us the 
Viterbi algorithm for decoding.

The main difference: instead of summing possible 
paths to each state, we take the max...

... and keep track of which one it was!
 45



↵t(j) =
NX

i=1

↵t�1(i)aijbj(ot)

Forward algorithm trellis locations:

vt(j) =
N

max
i=1

vt�1aijbj(ot)

Viterbi algorithm trellis locations:

We also save a backtrace through the most-likely states: 

btt(j) =
N

argmax
i=1

vt�1aijbj(ot)
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There are three fundamental kinds of questions that 
we can ask with an HMM:

1. Likelihood: Given a sequence of states, what is the most 
likely observed sequence? or; how likely is a given 
observation sequence? 

2. Decoding: Given an observation sequence and a fully-
specified HMM, what is the most likely sequence of states to 
have produced that observation? 

3. Learning: Given an observation sequence and a set of 
states, what are the likely transition and emission 
probabilities (A and B)?
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There are three fundamental kinds of questions that 
we can ask with an HMM:

1. Likelihood: Given a sequence of states, what is the most 
likely observed sequence? or; how likely is a given 
observation sequence? 

2. Decoding: Given an observation sequence and a fully-
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So, we have O, and know what our state vocabulary is...

... but we don’t know transition or emission probabilities.

We can use Baum-Welch algorithm (a.k.a. Forward-
Backward algorithm) to iteratively estimate A and B.

Lloyd WelchLeonard Baum
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Recall from before that the forward probability αt(i) is the 
probability of ending up in state i given observations O1:t.

A related property is the backward probability βt(i), which 
represents the probability of seeing observations Ot:T, 
given that we are currently in state i at time t. 

This is calculated using the backward algorithm, which is 
very similar to the forward algorithm (but in reverse!).
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�t(i) =
NX

j=1

aijbj(ot+1)�t+1(j)

This is calculated using the backward algorithm, which is 
very similar to the forward algorithm (but in reverse!)

�T (i) = ai,F
Probability of finishing (i.e., reaching end state) 
the observed sequence from state i.

Sum of the backwards probabilities 
of the different paths through the 
model that could happen from state i 
and time t.

P (O|�) = ↵T (qF ) = �1(0) =
NX

j=1

a0jbj(o1)�1(j)
Final forward probability of 
observation given model.
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Of course, we compute all of this using the same dynamic 
programming approach we’ve already seen:
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Now, how to use these to estimate A and B?

Baum-Welch is a variation on Expectation-Maximization...

... as such, we start with a “guess” for A and B, and 
iteratively improve it.

âij =
expected # transitions from state i to state j

expected number of transitions from state i

We begin by attempting to find:

If we had an estimate of the probability of transition i→j 
occurring at each time t, we could sum them to get the 
total count for i→j. 
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More formally: let ξt(i,j) be the probability of being in state 
i at time t and in state j at time t+1.

⇠t(i, j) = P (qt = i, qt+1 = j|O,�)

We can’t quite calculate this, but we can calculate 
something similar:

⇠̃t(i, j) = P (qt = i, qt+1 = j, O|�)

We have all the pieces we need to get this:

⇠̃t(i, j) = ↵t(i)aijbj(ot+1)�t+1(j)
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We have all the pieces we need to get this:

⇠̃t(i, j) = ↵t(i)aijbj(ot+1)�t+1(j)

Forward probability of 
observations up to this arc

Transition probability 
between states i and j

Emission probability 
of the next symbol

Backward probability 
after this arc
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Furthermore, because of P (X|Y, Z) =
P (X,Y |Z)

P (Y |Z)

P (O|�) = ↵T (qF ) = �1(0) =
NX

j=1

a0jbj(o1)�1(j)

We can transform           , or  P (qt = i, qt+1 = j, O|�)⇠̃t(i, j)

into           , or                                   , simply by dividing 
by            . 

P (qt = i, qt+1 = j|O,�)⇠t(i, j)

P (O|�)

So, the final equation is:

⇠t(i, j) =
↵t(i)aijbj(ot+1)�t+1(j)

↵T (qF )
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Remember:

“The probability of going from state i to state j at time t. 
(given a current estimate of the model).”

âij =
expected # transitions from state i to state j

expected number of transitions from state i

Which looks a lot like:

Summing over all times t gives us      : âij

âij =

PT
t=1 ⇠t(i, j)PT�1

t=1

PN
k=1 ⇠t(i, k)

⇠t(i, j) =
↵t(i)aijbj(ot+1)�t+1(j)

↵T (qF )
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All of the ways the model could have gotten into state i at 
time t...

... all of the ways the model could finish from state j at 
time t+1.

... the likelihood of going from i 
to j while emitting ot+1...
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We follow a similar process to estimate B.

b̂j(vk) =
expected # times in state j and observing symbol vk

expected number of times in state j

We’ll need to know the probability of being in state j at 
time t:

�t(j) = P (qt = j|O,�)

Using the same trick as before:

�t(j) =
P (qt = j, O|�)

P (O|�)
P (qt = j, O|�) = ↵t(j)�t(j)

“Probability of getting to this state at this time point, times the probability 
of the rest of the observations given this state and this time point”
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Using the same trick as before:

�t(j) =
P (qt = j, O|�)

P (O|�)
P (qt = j, O|�) = ↵t(j)�t(j)

“Probability of getting to this state at this time point, times the probability 
of the rest of the observations given this state and this time point”

�t(j) =
↵t(j)�t(j)

P (O|�)

b̂j(vk) =

P
T

t=1s.t.Ot=vk
�t(j)

P
T

t=1 �t(j)

“Only count observations 
where the observed 
emission was vk.”

”Total probability mass from being in this state and observing this symbol”  
“Total probability mass from being in this state”≈
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Now, that we have new estimates for A and B...

b̂j(vk) =

P
T

t=1s.t.Ot=vk
�t(j)

P
T

t=1 �t(j)

We can go back, calculate new forward and backward 
trellises based on these estimates, and re-compute A and B. 

Wash, rinse, and repeat until things converge… 
or we get bored.

In practice, much depends on our initial estimates, 
and so we often use additional information when 
possible (e.g., encoding impossible transitions, etc.).

âij =

PT
t=1 ⇠t(i, j)PT�1

t=1

PN
k=1 ⇠t(i, k)
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