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Word classes
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• 8 (ish) traditional parts of speech
• Noun, verb, adjective, preposition, adverb, 

article, interjection, pronoun, conjunction, etc
• This idea has been around for over 2000 years 

(Dionysius Thrax of Alexandria, c. 100 B.C.)

• Called: parts-of-speech, lexical category, 
word classes, morphological classes, lexical 
tags, POS

• We’ll use POS most frequently

For engineering 
purposes, simply words 
that behave “alike”

• Appear in similar 
contexts

• Perform similar 
functions in sentences

• Undergo similar 
transformations



POS Examples
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• N  noun   chair, bandwidth, pacing
• V  verb   study, debate, munch
• ADJ  adjective  purple, tall, ridiculous
• ADV  adverb  unfortunately, slowly,
• P  preposition  of, by, to
• PRO  pronoun  I, me, mine
• DET  determiner  the, a, that, those



Open vs. Closed classes

• Open: 
• Nouns, Verbs, Adjectives, Adverbs. 
• Why “open”?

• Closed: 
• determiners: a, an, the
• pronouns: she, he, I
• prepositions: on, under, over, near, by, …
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Determining part of speech tags
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• The Problem:

Word POS listing in Brown Corpus
heat noun verb
oil noun
in prep noun adv
a det noun noun-proper
large adj noun adv
pot noun



POS Tagging: Definition
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The process of assigning a part-of-speech or lexical 
class marker to each word in a sentence, corpus, etc.:

the
koala
put
the
keys
on
the
table

WORDS
TAGS

N
V
P
DET



Tagging is a disambiguation task
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Words often have more than one POS: back 
• The back door = JJ
• On my back = NN
• Win the voters back = RB
• Promised to back the bill = VB 

Why such a large 
gap between type- 
and token rate of 
ambiguity?



What POS tagging good for?

• Parsing:
• gives us the terminal nodes

• Information retrieval:
• knowing a word is a N tells you it 

gets plurals (query: “aardvarks” 
actually get (aardvark|aardvarks)
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Speech synthesis:
How to pronounce “lead”?
INsult  inSULT
OBject  obJECT
OVERflow  overFLOW
DIScount  disCOUNT
CONtent  conTENT



POS Tagging

Dr           Mitch         never        got          around       to          joining

All      we            gotta            do        is       go      around       the         
corner

Chateau          Petrus  costs   around       250
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POS Tagging

Dr/NNP Mitch/NNP never/RB got/VBD around/RP to/TO joining/VBG

All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT 
corner/NN

Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD
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Roadmap

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
4. Sequence labeling tasks

• Hidden-Markov Models (HMMs)
5. Visualizing HMMs

• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding
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Part-of-speech tagging assigns part-of-speech labels to each token in a 
sentence.

Helps to resolve local ambiguities, identify the who/what/why, and is a 
preparation step for later linguistic analyses (including parsing).

Tagsets are language- (and corpus-) dependent:

● Brown corpus (American English): 85 tags
● Penn Treebank (PTB; American English): 36 tags
● Sinica (Chinese): 294 tags
● Szeged (Hungarian): 744 tags
● “Universal” tagset: 12 tags (plus mappings from other tagsets)
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Part-of-speech tagging



● Brown Corpus (Kucera & Francis, 1967): 1m tagged words from various 
genres, including much of Robert Heinlein’s 1964 science fiction novel 
Stranger In A Strange Land, initially distributed as a book

● Penn Treebank (Marcus, Santorini, & Marcinkiewicz, 1993): 1m tagged and 
parsed words of the 1989 Wall St. Journal, distributed on CD-ROM (later 
releases added dyadic phone conversations)

● OntoNotes (Weischedel et al., 2011): most of the Wall St. Journal data, 
corrected by a senior syntax professor

● The Universal Dependencies project* (Nivre et al. 2015): free tagged and 
parsed data for roughly 100 treebanks in 60 languages

*http://universaldependencies.org/ 14

Brief History

http://universaldependencies.org/


How is there such a large gap in tagset size? E.g.

Szeged (Hungarian): 744 tags
Vs

 “Universal Dependencies” set: 12 tags
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How did this happen?



Rationale behind “British & European” tagsets

To provide “distinct codings for all classes of words having distinct 
grammatical behaviour” – Garside et al. 1987

•   The Lund tagset for adverb distinguishes between
• Adjunct – Process, Space, Time
• Wh-type – Manner, Reason, Space, Time, Wh-type + ‘S
• Conjunct – Appositional, Contrastive, Inferential, Listing, …
• Disjunct – Content, Style
• Postmodifier – “else”
• Negative – “not”
• Discourse Item – Appositional, Expletive, Greeting, Hesitator, …
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Motivations for keeping a smaller tag set

• Many tags are unique to particular lexical items, and can be recovered 
automatically if desired.
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Brown Tags For Verbs
be/BE have/HV sing/VB
is/BEZ has/HVZ sing/VBZ
was/BED had/HVD sang/VBD
being/BEG having/HVG singing/VBG
been/BEN had/HVN sung/VBN

Penn Treebank Tags For Verbs
be/VB have/VB sing/VB
is/VBZ has/VBZ sing/VBZ
was/VBD had/VBD sang/VBD
being/VBG having/VBG singing/VBG
been/VBN had/VBN sung/VBN

Note: tag sets are not linguistic theories per se, although of course they encode linguistic information

This is a practical decision rather than a scientific one



The universal tagset: open-class tags

• ADJ: adjective
• ADV: adverb
• NOUN: noun
• VERB: verb
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The universal tagset: closed-class tags

• ADP: adposition
• CONJ: conjunction
• DET: determiner
• NUM: numeral
• PRT: particle
• PRON: pronoun
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The universal tagset: miscellaneous tags

• PUNCT: punctuation
• X: other
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Universal tagset (automatic tagging)

Rolls-Royce NOUN   to  PRT
Motor  NOUN   remain VERB
Cars   NOUN   steady ADJ
Inc.   NOUN   at  ADP
said   VERB   about ADP
it   PRON   1,200 NUM
expects  VERB   cars  NOUN
its   PRON   in  ADP
U.S.   NOUN   1990  NUM
sales  NOUN   .  PUNCT
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Linguistic critique (-KBG/SPC)

The proper noun/common noun distinction is really useful, and present 
in most tagsets: it should have been preserved.
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Penn Treebank: open-class tags (1/2)

• JJ (ADJ): adjective
• JJR (ADJ): comparative adjective
• JJS (ADJ): superlative adjective
• NN (NOUN): singular common or mass noun
• NNS (NOUN): plural common or mass noun
• NNP (NOUN): singular proper noun
• NNPS (NOUN): plural proper noun
• RB (ADV): adverb 
• RBR (ADV): comparative adverb
• RBS (ADV): superlative adverb
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Penn Treebank: open-class tags (2/2)

• VB (VERB): verb (base form)
• VBD (VERB): simple past tense verb
• VBG (VERB): gerund or present participle
• VBN (VERB): past participle
• VBP (VERB): non 3rd-person singular present
• VBZ (VERB): 3rd-person singular present
• MD (VERB): modal
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Penn Treebank: closed-class tags

• CC (CONJ): coordinating conjunction 
• CD (NUM): numeral
• DT (DET): determiner
• EX (DET): existential there
• IN (ADP): preposition (and subordinating conjunctions)
• PDT (DET): “predeterminer” (e.g., both in both the boys)
• PRP (PRON): pronoun
• PRP$ (PRON): possessive pronoun
• WDT (DET): wh-determiner
• ...
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Penn Treebank: miscellaneous tags (1/2)

• # (PUNCT): #
• $ (PUNCT): $
• `` (PUNCT): left quotation mark
• “ (PUNCT): right quotation mark
• : (PUNCT): colon and semicolon
• -LRB- (PUNCT): left bracket
• -RRB- (PUNCT): right bracket
• , (PUNCT): comma
• . (PUNCT): sentential punctuation
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Penn Treebank: miscellaneous tags (2/2)

• FW (X): foreign word
• LS (X): list item marker
• SYM (X): symbol
• UH (X): interjection
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Linguistic critiques (-KBG/SPC)

• There are way too many punctuation tags.
• Existential there doesn’t need its own tag (EX); cf. existential it (PRP).
• The TO tag is massively polysemous (e.g., infinitive marker, 

preposition).
• Yet, there are many distinctions which could be trivially recovered 

from the tokens or the parse:
• IN: subordinating conjunction (heading a clause) vs. preposition (heading a 

prepositional phrase)
• UH: interjections (yes!) vs. filled pause (uh, um)
• DT: articles (a, an, the) vs. demonstratives (these, those)
• PRP: actual personal pronouns (I, her) vs. reflexive pronouns (myself)
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PTB tagset (automatic tagging)

Rolls-Royce NNP   to  TO
Motor  NNP   remain VB
Cars   NNPS   steady JJ
Inc.   NNP   at  IN
said   VBD   about IN
it   PRP   1,200 CD
expects  VBZ   cars  NNS
its   PRP$   in  IN
U.S.   NNP   1990  CD
sales  NNS   .  .
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Roadmap

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
4. Sequence labeling tasks

• Hidden-Markov Models (HMMs)
5. Visualizing HMMs

• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding
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Classical idea
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• The Problem:

Word POS listing in Brown
heat noun verb
oil noun
in prep noun adv
a det noun noun-proper
large adj noun adv
pot noun



Classical idea
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• The Old Solution: Depth First search. 
•  If each of n words has k tags on average, try the nk combinations until one 

works.
• (Can define “works” in a number of different ways)

• Machine Learning (Statistical NLP) Solutions: Automatically learn Part 
of Speech (POS) assignment.

• The best techniques achieve >97% accuracy per word on new materials, given 
large training corpora.



Simple statistical approach: Idea 1
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Let that sink in
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• How many words in the unseen test data can be tagged correctly? 
(Tag Accuracy) 

• Baseline is already 91% 
• (Baseline: performance on the “stupidest possible method”)

• Tag each word with it’s most frequent tag
• Tag all unknown words as nouns

• Partly easy because:
• Many words are unambiguous
• You get lots of points for the frequent easy cases (the, a, etc.) and for punctuation



Simple statistical approach: Idea 2
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For a string of words
 W = w1w2w3…wn

find the string of POS tags
T = t1 t2 t3 …tn

which maximizes P(T|W)
• i.e., the most likely POS tag ti for each word wi given its surrounding context



The sparse data problem…
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A Simple, but Impossible Approach to Compute P(T|W):

Count up instances of the string:

e.g. "heat oil in a large pot”

in the training corpus, and pick the most common tag assignment to 
the string



A BOTEC Estimate of What Works
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What parameters can we estimate with a million words of hand tagged 
training data?

• Assume a uniform distribution of 5000 words and 40 part of speech tags..

We can get reasonable estimates of
• Tag bigrams
• Word x tag pairs



How to use the estimates we can get

We can get reasonable estimates of
• Tag bigrams
• Word x tag pairs

• Let’s turn this intuition into a formal / implementable system
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Roadmap

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
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5. Visualizing HMMs
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• Probabilistic Automaton
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6. The three classic HMM problems
• Viterbi algorithm for decoding
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Sequence labeling

• A sequence-labeling problem has a sequence of length n as input
• X = (𝑥!, … , 𝑥")

• Output is another sequence also of length n
• 𝑌 = (𝑦!, … , 𝑦")

• Each 𝑦! ∈ 𝑌 is the ”label” of 𝑥!

General framework for formalizing many language-processing tasks!
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Sequence labeling applications
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Sequence labeling applications
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Sequence labeling applications
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Sequence labeling for POS
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Hidden markov models (HMMs) are a great technique 
for accomplishing such sequence labeling tasks



(Ordinary) markov models

• A markov model (e.g. a bigram model) generates a string:
• 𝑋 = (𝑥!, … , 𝑥")
• 𝑥# =⊳	 and 𝑥"$! =⊲

𝑃 𝑋 =,
#$!

"%!

𝑃(𝑥#| 𝑥#&!)

                

=,
#$!

"%!

Θ'!"#,'!
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Hidden Markov Model (HMM)

• In a hidden Markov model (HMM) we observe a string X, but in general its 
label sequence Y is “hidden” (not observed)

• Just as in an ordinary markov model we imagine that the label sequence Y 
is padded with START and STOP tokens
• 𝑦! =⊳	 and 𝑦"#$ =⊲

• An HMM is a generative model that jointly generates both the label 
sequence Y and the observation sequence X
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Specifically, the label sequence Y is generated by a Markov model. 
Then the observations X are generated from the Y.



Hidden Markov Model (HMM)

𝑃 𝑌 =$
!"#

$%#

𝑃(𝑦!|𝑦!&#)

=$
!"#

$%#

𝜎'%&','%
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𝑃 𝑋|𝑌 =$
!"#

$%#

𝑃(𝑥!|𝑦!)

=$
!"#

$%#

𝜏'%,)%

𝜎!,!!	 (Sigma) is a parameter estimating the 
probability that label y is followed by label 𝑦$

𝜏!,%	 (Tau) is a parameter estimating the probability 
that label y generated output X
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Check in: does it make sense

1. Our bigram language model is a markov model
2. In hidden Markov models (HMMs) we observe a string X, but in 

general its label sequence Y is “hidden” (not observed)
3. For us, the observed string is the output words and the label 

sequence is the part-of-speech tags



Hidden Markov Model (HMM)

𝑃 𝑌 =$
!"#

$%#

𝑃(𝑦!|𝑦!&#)

=$
!"#

$%#

𝜎'%&','%
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𝑃 𝑋|𝑌 =$
!"#

$%#

𝑃(𝑥!|𝑦!)

=$
!"#

$%#

𝜏'%,)%

𝜎!,!!	 (Sigma) is a parameter estimating the 
probability that label y is followed by label 𝑦$

𝜏!,%	 (Tau) is a parameter estimating the probability 
that label y generated output X

Think of 𝜎 (Sigma) as a “state-to-state” transition Think of 𝜏 (Tau) as a “state-to-token” emission



Hidden Markov Model (HMM)

𝑃 𝑋, 𝑌 = 𝑃 𝑌 𝑃(𝑋|𝑌)

= ∏!,-
./- 𝜎0!"#,0! 𝜏0!,1!
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𝜎!,!!	 (Sigma) is a parameter 
estimating the probability that 
label y is followed by label 𝑦$

𝜏!,%	 (Tau) is a parameter 
estimating the probability that 
label y generated output X

Think of 𝜎 (Sigma) as a “state-
to-state” transition

Other sources use the term A 
for the "transition probability"

Think of 𝜏 (Tau) as a “state-to-
tag” emission

Other sources use the term B 
for the “emission probability”

Generative story of HMMs: generate the next label 𝑦# with probability 𝑃(𝑦#|𝑦#&!), 
and then generate the next member of the sequence 𝑥# with probability 𝑃(𝑥#|𝑦#)



Tags can be thought of as hidden states...

Observed words can be thought of as emissions...
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Roadmap

1. Word classes and part-of-speech (POS) tagging
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• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding
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Three ways to visualize HMMs

• Bayes-net

• Probabilistic automaton

• Trellis
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Three ways to visualize HMMs: Bayes-Net
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Three ways to visualize HMMs: Probabilistic 
Automata



Exercise
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Exercise

LING83800 -- S24 57

Joint probability of the 
labeling and the string



Three ways to visualize HMMs: Trellis
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Supervised HMM Training
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Supervised  
HMM

Training

John ate the apple  
A dog bit Mary  
Mary hit the dog

cat.
John gave Mary the

.

.

If training sequences are labeled (tagged) with the  underlying state
sequencesthat generated them, then  the parameters, λ={𝜎,𝜏}canall
beestimated directly.
Training Sequences

Det Noun PropNoun Verb



Likelihood and Prior
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HMMTaggers choose  
tag sequence that  
maximizes this  
formula:

– P(word|tag) ×
P(tag|previous n  
tags)



How to get our estimates?
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• To estimate the parameters of this model, given an annotated training 
corpus:

• Because many of these counts are small, smoothing is necessary for 
best results…



Two kinds of probabilities
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Tag transition probabilitiesp(ti|ti-1)
Determiners likely to precedeadjsand nouns

That/DT flight/NN
The/DT yellow/JJhat/NN
SoweexpectP(NN|DT)andP(JJ|DT)to behigh
But P(DT|JJ) tobe pretty low

ComputeP(NN|DT)by counting in alabeled corpus:
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Two kinds of probabilities
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Word likelihood “emission” probabilitiesp(wi|ti)
VBZ(3sgPresverb)likelyto be“is”
ComputeP(is|VBZ)bycountingina labeled  corpus:



Let’s review that (HMMs)

𝑃 𝑋, 𝑌 = 𝑃 𝑌 𝑃(𝑋|𝑌)

= ∏!,-
./- 𝜎0!"#,0! 𝜏0!,1!
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𝜎!,!!	 (Sigma) is a parameter 
estimating the probability that 
label y is followed by label 𝑦$

𝜏!,%	 (Tau) is a parameter 
estimating the probability that 
label y generated output X

You’ll also see the term A for 
the "transition probability"

You’ll also see the the term B for 
the “emission probability”

Generative story of HMMs: generate the next label 𝑦# with probability 𝑃(𝑦#|𝑦#&!), 
and then generate the next member of the sequence 𝑥# with probability 𝑃(𝑥#|𝑦#)



Practice “Quiz”
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Parameters of an HMM

LING83800 -- S24 67

• States: A set of states S=s1, … sn

• Transition probabilities (Sigma): A= a1,1, a1,2, …, an,n Each ai,j 
represents the probability of transitioning from state si to sj.

• Emission probabilities (Tau): a set B of functions of the form bi(ot) 
which is the probability of observation ot being emitted by si

• Initial state distribution:  𝜋!  is the probability that si is a start state



Roadmap

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
4. Sequence labeling tasks

• Hidden-Markov Models (HMMs)
5. Visualizing HMMs

• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding
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The Three Basic HMM Problems
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• Problem 1 (Evaluation): Given the observation sequence O=o1,…,oT 
and an HMM model  𝜆 = (𝐴, 𝐵, 𝜋), how do we compute the 
probability of O given the model?

• Problem 2 (Decoding): Given the observation sequence O and an 
HMM model 𝜆, how do we find the state sequence that best explains 
the observations?

• Problem 3 (Learning): How do we adjust the model parameters 𝜆 =
(𝐴, 𝐵, 𝜋), to maximize  𝑃(𝑂|𝜆)?



Problem 1: Probability of an Observation 
Sequence
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• Q: What is 𝑃(𝑂|𝜆) ?
• A: the sum of the probabilities of all possible state sequences in the 

HMM.



Crucial Data Structure: the Trellis
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Dynamic Programming Solution: Forward 
Algorithm
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Simply sum the probabilities 
rather than picking the most 
likely one



Forward Algorithm

• The Forward algorithm gives the sum of all paths through an HMM 
efficiently.

• This is the total probability of the output sequence
𝑃(𝑂|𝜆)

Discussion question:
How is this different from just using an N-gram language model to get 

the probability of the output sequence? Is this better?
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Using HMMs

• Viterbi algorithm* is an efficient solution to finding the most 
probable sequence of hidden states that could have generated the 
observed sequence

• Also called the “Viterbi labeling”

• We’ll also briefly mention two additional algorithms:
• Finding the total probability of an observed string according to an HMM
• Finding the most likely state at any given point

LING83800 -- S24 74https://en.wikipedia.org/wiki/Andrew_Viterbi



Most likely labels

• Given an HMM (𝜎, 𝜏) and an observed sequence of words X, what is 
the most likely label sequence 2𝑦?

2𝑦 = 𝑎𝑟𝑔0𝑚𝑎𝑥(𝑥, 𝑦)

• In principle we could solve this by enumerating all possible Y, and 
finding the one that maximized P(x,y)

• But this grows exponentially with the length of the sentence (n)
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How bad is the brute force solution?

• Assume that every word had exactly two possible tags.

• Then a string of length one has two possible sequences,
• A sequence of two word has 4 possible state sequences
• … a sequence of n words has 2. possible state sequences

Pick a random sentence out of the New York Times: it has 38 words.
• 223 	≅ 10-4	 i.e. a trillion. 
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Dynamic Programming Solution: Viterbi 
decoding
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Finding the probability of the most likely solution for the 
prefix X up to position i that ends in state y

We can compute all our  μ_y(i) by starting on 
the left and working our way to the right

We next go from time (i-1) to time i as follows:



Dynamic Programming Solution: Viterbi 
decoding
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At each stage we need look 
backward only one step because 
the new maximum probability 
must be the continuation from 
the maximum probability at one 
of the previous states. 



Dynamic Programming Solution: Viterbi 
decoding
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• Computation starts at the left by 
setting 𝜇⊳ 0 = 1

• Moving to word 1, we need to 
compute 𝜇' 1  and 𝜇( 1
• This is straightforward since there 

is only one possible prior state
• 𝜇' 1 = 𝜇⊳ 0 ∗ 𝜏',)*+,- ∗ 𝜎⊳,'
• 𝜇' 1 = 1.0 ∗ 0.3 ∗ 0.4
• 𝜇' 1 = 0.12

• Moving to word 2, there is only one 
possible generating state with non-
zero value (namely ‘N’), but we need 
to compute the two possible 
predecessors at i=1
• …

• Moving to word 3…



Viterbi Algorithm Complexity
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• Naïve approach requires exponential time to 
evaluate all NT state sequences

• Forward algorithm using dynamic programming 
takes O(N2T) computations

(Where T is the length of the sentence, and N is 
the size of the tag set)



How did the Forward algorithm (for sequence 
likelihood) related to Viterbi (for most probably 

tag path)?
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Problem 2: Decoding
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• The Forward algorithm gives the sum of all paths 
through an HMM efficiently.
• Here, we want to find the highest probability path.
• We want to find the state sequence Q=q1…qT, such 

that

 

Q= argmax
Q'

P(Q' |O,l)



Viterbi Algorithm
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• Just like the forward algorithm, but instead of 
summing over transitions from incoming states, 
compute the maximum

• Forward:

• Viterbi Recursion:

1
1

( ) ( ) ( )
N

t t ij j t
i
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Viterbi Algorithm
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• Just like the forward algorithm, but instead of 
summing over transitions from incoming states, 
compute the maximum

• Forward:

• Viterbi Recursion:

1
1

( ) ( ) ( )
N

t t ij j t
i

j i a b oa a -
=

é ù= ê úë û
å

11
max ( ) ( )( ) t ijt j ti N

i a b oj dd -£ £
é ù= ë û

Tau: probability of generating output 
word “o” from tag state “j” (at time “t”)

Sigma: probability of transitioning 
from state “i” to state “j”

Probability of getting to state “i” at time 
“t-1”



Not quite what we want…
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• Viterbi recursion computes the maximum probability 
path to state j at time t given that the partial 
observation o1 … ot has been generated

• But we want the path itself that gives the maximum 
probability
• Solution:  

1. Keep backpointers
2. Find 
3. Chase backpointers from state j at time T to find state 

sequence (backwards) 

11
max ( ) ( )( ) t ijt j ti N

i a b oj dd -£ £
é ù= ë û

argmax ( )Tj
jd



Viterbi Algorithm
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Let T = # of part-of-speech tags
      W = # of words in the sentence
/* Initialization Step */
for t = 1 to T
       Score(t, 1) = Pr(Word1| Tagt) * Pr(Tagt| φ)
       BackPtr(t, 1) = 0;
/* Iteration Step */
for w = 2 to W
    for t = 1 to T
        Score(t, w) = Pr(Wordw| Tagt) *MAXj=1,T(Score(j, w-1) * Pr(Tagt| Tagj))    
        BackPtr(t, w) = index of j that gave the max above
/* Sequence Identification */
Seq(W ) = t that maximizes Score(t,W ) 
for w = W -1 to 1
    Seq(w) = BackPtr(Seq(w+1),w+1)
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Let T = # of part-of-speech tags
      W = # of words in the sentence
/* Initialization Step */
for t = 1 to T
       Score(t, 1) = Pr(Word1| Tagt) * Pr(Tagt| φ)
       BackPtr(t, 1) = 0;
/* Iteration Step */
for w = 2 to W
    for t = 1 to T
        Score(t, w) = Pr(Wordw| Tagt) *MAXj=1,T(Score(j, w-1) * Pr(Tagt| Tagj))    
        BackPtr(t, w) = index of j that gave the max above
/* Sequence Identification */
Seq(W ) = t that maximizes Score(t,W ) 
for w = W -1 to 1
    Seq(w) = BackPtr(Seq(w+1),w+1)

Viterbi Algorithm
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Let T = # of part-of-speech tags
      W = # of words in the sentence
/* Initialization Step */
for t = 1 to T
       Score(t, 1) = Pr(Word1| Tagt) * Pr(Tagt| φ)
       BackPtr(t, 1) = 0;
/* Iteration Step */
for w = 2 to W
    for t = 1 to T
        Score(t, w) = Pr(Wordw| Tagt) *MAXj=1,T(Score(j, w-1) * Pr(Tagt| Tagj))    
        BackPtr(t, w) = index of j that gave the max above
/* Sequence Identification */
Seq(W ) = t that maximizes Score(t,W ) 
for w = W -1 to 1
    Seq(w) = BackPtr(Seq(w+1),w+1)

Another inner loop,
But we’re only 
keeping the best path 
to each possible prior 
tag --> still an 
exponential reduction 
in computation 
compared to the 
brute-force solution 

Probability up to this point for 
the prior tag j

(The backpointers keep track of 
the total path to that tag, but 
here we “don’t care”)

Viterbi Algorithm
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Let T = # of part-of-speech tags
      W = # of words in the sentence
/* Initialization Step */
for t = 1 to T
       Score(t, 1) = Pr(Word1| Tagt) * Pr(Tagt| φ)
       BackPtr(t, 1) = 0;
/* Iteration Step */
for w = 2 to W
    for t = 1 to T
        Score(t, w) = Pr(Wordw| Tagt) *MAXj=1,T(Score(j, w-1) * Pr(Tagt| Tagj))    
        BackPtr(t, w) = index of j that gave the max above
/* Sequence Identification */
Seq(W ) = t that maximizes Score(t,W ) 
for w = W -1 to 1
    Seq(w) = BackPtr(Seq(w+1),w+1)

Done once we find the best 
tag that could generate last 
word

Just need to recurse through 
the back-pointers

Viterbi Algorithm



Check in: Given the pseudo-code from the 
previous slide could you implement the Viterbi 
algorithm right now?

If not, what is the most confusing part?
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The Three Basic HMM Problems
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• Problem 1 (Evaluation): Given the observation sequence O=o1,…,oT 
and an HMM model  𝜆 = (𝐴, 𝐵, 𝜋), how do we compute the 
probability of O given the model?

• Problem 2 (Decoding): Given the observation sequence O and an 
HMM model 𝜆, how do we find the state sequence that best explains 
the observations?

• Problem 3 (Learning): How do we adjust the model parameters 𝜆 =
(𝐴, 𝐵, 𝜋), to maximize  𝑃(𝑂|𝜆)?



So, we have O, and know what our state vocabulary is...

... but we don’t know transition or emission probabilities.

We can use Baum-Welch algorithm (a.k.a. Forward-Backward 
algorithm) to iteratively estimate A and B.

Lloyd WelchLeonard Baum
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Recall from before that the forward probability αt(i) is the 
probability of ending up in state i given observations O1:t.

A related property is the backward probability βt(i), which 
represents the probability of seeing observations Ot:T, given 
that we are currently in state i at time t. 

This is calculated using the backward algorithm, which is very 
similar to the forward algorithm (but in reverse!).

93



Forward-Backward
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We’re not going to cover the Forward-Backward algorithm here… but 
just know that it:

is a dynamic programming solution (like Viterbi) for estimating the 
optimal parameter values for an HMM (transition and emission / Sigma 
and Tau probability) without any labeled training data

The intuition behind how this works is as follows



Forward-Backward intuition
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• The intuition for how this works is that we start with a (very bad) guess for Sigma and Tau.
• We use those to estimate 

• If we had an estimate of the probability of transition i→j occurring at each time t, we could sum 
them to get the total count for i→j. 

• We use those estimates to calculate new values for Sigma and Tau
• Which in turns gives us new transition estimates
• Which in turns gives us new Sigma and Tau estimates
• …
• You repeat that process until the algorithm converges (extremely little change in the parameters 

from one iteration to the next) or we give up at stop after a large number of iterations



Unsupervised tagging
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Obviously this just sounds cool (😎). A machine learning model without any 
labeled training data?

• However, the results are often “strange” (they represent *some* way to 
categorize the data, but not exactly the same linguistically constrained way 
that we’d like)

• And perform worse compared to results from models trained on labeled 
data (supervised training)

• E.g., Garrette & Baldridge (2013) outperformed an unsupervised tagger 
with just two hours worth of annotation time, in two languages—
Kinyarwanda and Malagasy—they did not know ahead of time.


