
Hidden Markov Models (HMMs)
--or--

POS tagging and sequence labeling

LING83800: METHODS IN COMPUTATIONAL LINGUISTICS II
April 8, 2024

Spencer Caplan / Natasha Tyulina / Kyle Gorman

Today

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
4. Sequence labeling tasks

• Hidden-Markov Models (HMMs)
5. Visualizing HMMs

• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding

LING83800 -- S24 2

Word classes

LING83800 -- S24 3

• 8 (ish) traditional parts of speech
• Noun, verb, adjective, preposition, adverb,

article, interjection, pronoun, conjunction, etc
• This idea has been around for over 2000 years

(Dionysius Thrax of Alexandria, c. 100 B.C.)

• Called: parts-of-speech, lexical category,
word classes, morphological classes, lexical
tags, POS

• We’ll use POS most frequently

For engineering
purposes, simply words
that behave “alike”

• Appear in similar
contexts

• Perform similar
functions in sentences

• Undergo similar
transformations

POS Examples

LING83800 -- S24 4

• N noun chair, bandwidth, pacing
• V verb study, debate, munch
• ADJ adjective purple, tall, ridiculous
• ADV adverb unfortunately, slowly,
• P preposition of, by, to
• PRO pronoun I, me, mine
• DET determiner the, a, that, those

Open vs. Closed classes

• Open:
• Nouns, Verbs, Adjectives, Adverbs.
• Why “open”?

• Closed:
• determiners: a, an, the
• pronouns: she, he, I
• prepositions: on, under, over, near, by, …

LING83800 -- S24 5

Determining part of speech tags

LING83800 -- S24 6

• The Problem:

Word POS listing in Brown Corpus
heat noun verb
oil noun
in prep noun adv
a det noun noun-proper
large adj noun adv
pot noun

POS Tagging: Definition

LING83800 -- S24 7

The process of assigning a part-of-speech or lexical
class marker to each word in a sentence, corpus, etc.:

the
koala
put
the
keys
on
the
table

WORDS
TAGS

N
V
P
DET

Tagging is a disambiguation task

LING83800 -- S24 8

Words often have more than one POS: back
• The back door = JJ
• On my back = NN
• Win the voters back = RB
• Promised to back the bill = VB

Why such a large
gap between type-
and token rate of
ambiguity?

What POS tagging good for?

• Parsing:
• gives us the terminal nodes

• Information retrieval:
• knowing a word is a N tells you it

gets plurals (query: “aardvarks”
actually get (aardvark|aardvarks)

LING83800 -- S24 9

Speech synthesis:
How to pronounce “lead”?
INsult inSULT
OBject obJECT
OVERflow overFLOW
DIScount disCOUNT
CONtent conTENT

POS Tagging

Dr Mitch never got around to joining

All we gotta do is go around the
corner

Chateau Petrus costs around 250

LING83800 -- S24 10

POS Tagging

Dr/NNP Mitch/NNP never/RB got/VBD around/RP to/TO joining/VBG

All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT
corner/NN

Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

LING83800 -- S24 11

Roadmap

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
4. Sequence labeling tasks

• Hidden-Markov Models (HMMs)
5. Visualizing HMMs

• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding

LING83800 -- S24 12

Part-of-speech tagging assigns part-of-speech labels to each token in a
sentence.

Helps to resolve local ambiguities, identify the who/what/why, and is a
preparation step for later linguistic analyses (including parsing).

Tagsets are language- (and corpus-) dependent:

● Brown corpus (American English): 85 tags
● Penn Treebank (PTB; American English): 36 tags
● Sinica (Chinese): 294 tags
● Szeged (Hungarian): 744 tags
● “Universal” tagset: 12 tags (plus mappings from other tagsets)

13

Part-of-speech tagging

● Brown Corpus (Kucera & Francis, 1967): 1m tagged words from various
genres, including much of Robert Heinlein’s 1964 science fiction novel
Stranger In A Strange Land, initially distributed as a book

● Penn Treebank (Marcus, Santorini, & Marcinkiewicz, 1993): 1m tagged and
parsed words of the 1989 Wall St. Journal, distributed on CD-ROM (later
releases added dyadic phone conversations)

● OntoNotes (Weischedel et al., 2011): most of the Wall St. Journal data,
corrected by a senior syntax professor

● The Universal Dependencies project* (Nivre et al. 2015): free tagged and
parsed data for roughly 100 treebanks in 60 languages

*http://universaldependencies.org/ 14

Brief History

http://universaldependencies.org/

How is there such a large gap in tagset size? E.g.

Szeged (Hungarian): 744 tags
Vs

 “Universal Dependencies” set: 12 tags

15

How did this happen?

Rationale behind “British & European” tagsets

To provide “distinct codings for all classes of words having distinct
grammatical behaviour” – Garside et al. 1987

• The Lund tagset for adverb distinguishes between
• Adjunct – Process, Space, Time
• Wh-type – Manner, Reason, Space, Time, Wh-type + ‘S
• Conjunct – Appositional, Contrastive, Inferential, Listing, …
• Disjunct – Content, Style
• Postmodifier – “else”
• Negative – “not”
• Discourse Item – Appositional, Expletive, Greeting, Hesitator, …

LING83800 -- S24 16

Motivations for keeping a smaller tag set

• Many tags are unique to particular lexical items, and can be recovered
automatically if desired.

LING83800 -- S24 17

Brown Tags For Verbs
be/BE have/HV sing/VB
is/BEZ has/HVZ sing/VBZ
was/BED had/HVD sang/VBD
being/BEG having/HVG singing/VBG
been/BEN had/HVN sung/VBN

Penn Treebank Tags For Verbs
be/VB have/VB sing/VB
is/VBZ has/VBZ sing/VBZ
was/VBD had/VBD sang/VBD
being/VBG having/VBG singing/VBG
been/VBN had/VBN sung/VBN

Note: tag sets are not linguistic theories per se, although of course they encode linguistic information

This is a practical decision rather than a scientific one

The universal tagset: open-class tags

• ADJ: adjective
• ADV: adverb
• NOUN: noun
• VERB: verb

LING83800 -- S24 18

The universal tagset: closed-class tags

• ADP: adposition
• CONJ: conjunction
• DET: determiner
• NUM: numeral
• PRT: particle
• PRON: pronoun

LING83800 -- S24 19

The universal tagset: miscellaneous tags

• PUNCT: punctuation
• X: other

LING83800 -- S24 20

Universal tagset (automatic tagging)

Rolls-Royce NOUN to PRT
Motor NOUN remain VERB
Cars NOUN steady ADJ
Inc. NOUN at ADP
said VERB about ADP
it PRON 1,200 NUM
expects VERB cars NOUN
its PRON in ADP
U.S. NOUN 1990 NUM
sales NOUN . PUNCT

LING83800 -- S24 21

Linguistic critique (-KBG/SPC)

The proper noun/common noun distinction is really useful, and present
in most tagsets: it should have been preserved.

LING83800 -- S24 22

Penn Treebank: open-class tags (1/2)

• JJ (ADJ): adjective
• JJR (ADJ): comparative adjective
• JJS (ADJ): superlative adjective
• NN (NOUN): singular common or mass noun
• NNS (NOUN): plural common or mass noun
• NNP (NOUN): singular proper noun
• NNPS (NOUN): plural proper noun
• RB (ADV): adverb
• RBR (ADV): comparative adverb
• RBS (ADV): superlative adverb

LING83800 -- S24 23

Penn Treebank: open-class tags (2/2)

• VB (VERB): verb (base form)
• VBD (VERB): simple past tense verb
• VBG (VERB): gerund or present participle
• VBN (VERB): past participle
• VBP (VERB): non 3rd-person singular present
• VBZ (VERB): 3rd-person singular present
• MD (VERB): modal

LING83800 -- S24 24

Penn Treebank: closed-class tags

• CC (CONJ): coordinating conjunction
• CD (NUM): numeral
• DT (DET): determiner
• EX (DET): existential there
• IN (ADP): preposition (and subordinating conjunctions)
• PDT (DET): “predeterminer” (e.g., both in both the boys)
• PRP (PRON): pronoun
• PRP$ (PRON): possessive pronoun
• WDT (DET): wh-determiner
• ...

LING83800 -- S24 25

Penn Treebank: miscellaneous tags (1/2)

• # (PUNCT): #
• $ (PUNCT): $
• `` (PUNCT): left quotation mark
• “ (PUNCT): right quotation mark
• : (PUNCT): colon and semicolon
• -LRB- (PUNCT): left bracket
• -RRB- (PUNCT): right bracket
• , (PUNCT): comma
• . (PUNCT): sentential punctuation

LING83800 -- S24 26

Penn Treebank: miscellaneous tags (2/2)

• FW (X): foreign word
• LS (X): list item marker
• SYM (X): symbol
• UH (X): interjection

LING83800 -- S24 27

Linguistic critiques (-KBG/SPC)

• There are way too many punctuation tags.
• Existential there doesn’t need its own tag (EX); cf. existential it (PRP).
• The TO tag is massively polysemous (e.g., infinitive marker,

preposition).
• Yet, there are many distinctions which could be trivially recovered

from the tokens or the parse:
• IN: subordinating conjunction (heading a clause) vs. preposition (heading a

prepositional phrase)
• UH: interjections (yes!) vs. filled pause (uh, um)
• DT: articles (a, an, the) vs. demonstratives (these, those)
• PRP: actual personal pronouns (I, her) vs. reflexive pronouns (myself)

LING83800 -- S24 28

PTB tagset (automatic tagging)

Rolls-Royce NNP to TO
Motor NNP remain VB
Cars NNPS steady JJ
Inc. NNP at IN
said VBD about IN
it PRP 1,200 CD
expects VBZ cars NNS
its PRP$ in IN
U.S. NNP 1990 CD
sales NNS . .

LING83800 -- S24 29

Roadmap

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
4. Sequence labeling tasks

• Hidden-Markov Models (HMMs)
5. Visualizing HMMs

• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding

LING83800 -- S24 30

Classical idea

LING83800 -- S24 31

• The Problem:

Word POS listing in Brown
heat noun verb
oil noun
in prep noun adv
a det noun noun-proper
large adj noun adv
pot noun

Classical idea

LING83800 -- S24 32

• The Old Solution: Depth First search.
• If each of n words has k tags on average, try the nk combinations until one

works.
• (Can define “works” in a number of different ways)

• Machine Learning (Statistical NLP) Solutions: Automatically learn Part
of Speech (POS) assignment.

• The best techniques achieve >97% accuracy per word on new materials, given
large training corpora.

Simple statistical approach: Idea 1

LING83800 -- S24 33

Let that sink in

LING83800 -- S24 34

• How many words in the unseen test data can be tagged correctly?
(Tag Accuracy)

• Baseline is already 91%
• (Baseline: performance on the “stupidest possible method”)

• Tag each word with it’s most frequent tag
• Tag all unknown words as nouns

• Partly easy because:
• Many words are unambiguous
• You get lots of points for the frequent easy cases (the, a, etc.) and for punctuation

Simple statistical approach: Idea 2

LING83800 -- S24 35

For a string of words
 W = w1w2w3…wn

find the string of POS tags
T = t1 t2 t3 …tn

which maximizes P(T|W)
• i.e., the most likely POS tag ti for each word wi given its surrounding context

The sparse data problem…

LING83800 -- S24 36

A Simple, but Impossible Approach to Compute P(T|W):

Count up instances of the string:

e.g. "heat oil in a large pot”

in the training corpus, and pick the most common tag assignment to
the string

A BOTEC Estimate of What Works

LING83800 -- S24 37

What parameters can we estimate with a million words of hand tagged
training data?

• Assume a uniform distribution of 5000 words and 40 part of speech tags..

We can get reasonable estimates of
• Tag bigrams
• Word x tag pairs

How to use the estimates we can get

We can get reasonable estimates of
• Tag bigrams
• Word x tag pairs

• Let’s turn this intuition into a formal / implementable system

LING83800 -- S24 38

Roadmap

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
4. Sequence labeling tasks

• Hidden-Markov Models (HMMs)
5. Visualizing HMMs

• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding

LING83800 -- S24 39

Sequence labeling

• A sequence-labeling problem has a sequence of length n as input
• X = (𝑥!, … , 𝑥")

• Output is another sequence also of length n
• 𝑌 = (𝑦!, … , 𝑦")

• Each 𝑦! ∈ 𝑌 is the ”label” of 𝑥!

General framework for formalizing many language-processing tasks!

LING83800 -- S24 40

Sequence labeling applications

LING83800 -- S24 41

Sequence labeling applications

LING83800 -- S24 42

Sequence labeling applications

LING83800 -- S24 43

Sequence labeling for POS

LING83800 -- S24 44

Hidden markov models (HMMs) are a great technique
for accomplishing such sequence labeling tasks

(Ordinary) markov models

• A markov model (e.g. a bigram model) generates a string:
• 𝑋 = (𝑥!, … , 𝑥")
• 𝑥# =⊳	 and 𝑥"$! =⊲

𝑃 𝑋 =,
#$!

"%!

𝑃(𝑥#| 𝑥#&!)

=,
#$!

"%!

Θ'!"#,'!

LING83800 -- S24 45

Hidden Markov Model (HMM)

• In a hidden Markov model (HMM) we observe a string X, but in general its
label sequence Y is “hidden” (not observed)

• Just as in an ordinary markov model we imagine that the label sequence Y
is padded with START and STOP tokens
• 𝑦! =⊳	 and 𝑦"#$ =⊲

• An HMM is a generative model that jointly generates both the label
sequence Y and the observation sequence X

LING83800 -- S24 46

Specifically, the label sequence Y is generated by a Markov model.
Then the observations X are generated from the Y.

Hidden Markov Model (HMM)

𝑃 𝑌 =$
!"#

$%#

𝑃(𝑦!|𝑦!&#)

=$
!"#

$%#

𝜎'%&','%

LING83800 -- S24 47

𝑃 𝑋|𝑌 =$
!"#

$%#

𝑃(𝑥!|𝑦!)

=$
!"#

$%#

𝜏'%,)%

𝜎!,!!	 (Sigma) is a parameter estimating the
probability that label y is followed by label 𝑦$

𝜏!,%	 (Tau) is a parameter estimating the probability
that label y generated output X

LING83800 -- S24 48

Check in: does it make sense

1. Our bigram language model is a markov model
2. In hidden Markov models (HMMs) we observe a string X, but in

general its label sequence Y is “hidden” (not observed)
3. For us, the observed string is the output words and the label

sequence is the part-of-speech tags

Hidden Markov Model (HMM)

𝑃 𝑌 =$
!"#

$%#

𝑃(𝑦!|𝑦!&#)

=$
!"#

$%#

𝜎'%&','%

LING83800 -- S24 49

𝑃 𝑋|𝑌 =$
!"#

$%#

𝑃(𝑥!|𝑦!)

=$
!"#

$%#

𝜏'%,)%

𝜎!,!!	 (Sigma) is a parameter estimating the
probability that label y is followed by label 𝑦$

𝜏!,%	 (Tau) is a parameter estimating the probability
that label y generated output X

Think of 𝜎 (Sigma) as a “state-to-state” transition Think of 𝜏 (Tau) as a “state-to-token” emission

Hidden Markov Model (HMM)

𝑃 𝑋, 𝑌 = 𝑃 𝑌 𝑃(𝑋|𝑌)

= ∏!,-
./- 𝜎0!"#,0! 𝜏0!,1!

LING83800 -- S24 50

𝜎!,!!	 (Sigma) is a parameter
estimating the probability that
label y is followed by label 𝑦$

𝜏!,%	 (Tau) is a parameter
estimating the probability that
label y generated output X

Think of 𝜎 (Sigma) as a “state-
to-state” transition

Other sources use the term A
for the "transition probability"

Think of 𝜏 (Tau) as a “state-to-
tag” emission

Other sources use the term B
for the “emission probability”

Generative story of HMMs: generate the next label 𝑦# with probability 𝑃(𝑦#|𝑦#&!),
and then generate the next member of the sequence 𝑥# with probability 𝑃(𝑥#|𝑦#)

Tags can be thought of as hidden states...

Observed words can be thought of as emissions...

51LING83800 -- S24

Roadmap

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
4. Sequence labeling tasks

• Hidden-Markov Models (HMMs)
5. Visualizing HMMs

• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding

LING83800 -- S24 52

Three ways to visualize HMMs

• Bayes-net

• Probabilistic automaton

• Trellis

LING83800 -- S24 53

Three ways to visualize HMMs: Bayes-Net

LING83800 -- S24 54

LING83800 -- S24 55

Three ways to visualize HMMs: Probabilistic
Automata

Exercise

LING83800 -- S24 56

Exercise

LING83800 -- S24 57

Joint probability of the
labeling and the string

Three ways to visualize HMMs: Trellis

LING83800 -- S24 58

Supervised HMM Training

LING83800 -- S24 59

Supervised
HMM

Training

John ate the apple
A dog bit Mary
Mary hit the dog

cat.
John gave Mary the

.

.

If training sequences are labeled (tagged) with the underlying state
sequencesthat generated them, then the parameters, λ={𝜎,𝜏}canall
beestimated directly.
Training Sequences

Det Noun PropNoun Verb

Likelihood and Prior

LING83800 -- S24 60

HMMTaggers choose
tag sequence that
maximizes this
formula:

– P(word|tag) ×
P(tag|previous n
tags)

How to get our estimates?

LING83800 -- S24 61

• To estimate the parameters of this model, given an annotated training
corpus:

• Because many of these counts are small, smoothing is necessary for
best results…

Two kinds of probabilities

62

Tag transition probabilitiesp(ti|ti-1)
Determiners likely to precedeadjsand nouns

That/DT flight/NN
The/DT yellow/JJhat/NN
SoweexpectP(NN|DT)andP(JJ|DT)to behigh
But P(DT|JJ) tobe pretty low

ComputeP(NN|DT)by counting in alabeled corpus:

LING83800 -- S24

Two kinds of probabilities

LING83800 -- S24 63

Word likelihood “emission” probabilitiesp(wi|ti)
VBZ(3sgPresverb)likelyto be“is”
ComputeP(is|VBZ)bycountingina labeled corpus:

Let’s review that (HMMs)

𝑃 𝑋, 𝑌 = 𝑃 𝑌 𝑃(𝑋|𝑌)

= ∏!,-
./- 𝜎0!"#,0! 𝜏0!,1!

LING83800 -- S24 64

𝜎!,!!	 (Sigma) is a parameter
estimating the probability that
label y is followed by label 𝑦$

𝜏!,%	 (Tau) is a parameter
estimating the probability that
label y generated output X

You’ll also see the term A for
the "transition probability"

You’ll also see the the term B for
the “emission probability”

Generative story of HMMs: generate the next label 𝑦# with probability 𝑃(𝑦#|𝑦#&!),
and then generate the next member of the sequence 𝑥# with probability 𝑃(𝑥#|𝑦#)

Practice “Quiz”

LING83800 -- S24 65

Parameters of an HMM

LING83800 -- S24 67

• States: A set of states S=s1, … sn

• Transition probabilities (Sigma): A= a1,1, a1,2, …, an,n Each ai,j
represents the probability of transitioning from state si to sj.

• Emission probabilities (Tau): a set B of functions of the form bi(ot)
which is the probability of observation ot being emitted by si

• Initial state distribution: 𝜋! is the probability that si is a start state

Roadmap

1. Word classes and part-of-speech (POS) tagging
2. Tagset design and tradeoffs
3. Tagging methods: Back-of-the-envelope math for what’s possible
4. Sequence labeling tasks

• Hidden-Markov Models (HMMs)
5. Visualizing HMMs

• Bayes Net
• Probabilistic Automaton
• Trellis

6. The three classic HMM problems
• Viterbi algorithm for decoding

LING83800 -- S24 68

The Three Basic HMM Problems

LING83800 -- S24 69

• Problem 1 (Evaluation): Given the observation sequence O=o1,…,oT
and an HMM model 𝜆 = (𝐴, 𝐵, 𝜋), how do we compute the
probability of O given the model?

• Problem 2 (Decoding): Given the observation sequence O and an
HMM model 𝜆, how do we find the state sequence that best explains
the observations?

• Problem 3 (Learning): How do we adjust the model parameters 𝜆 =
(𝐴, 𝐵, 𝜋), to maximize 𝑃(𝑂|𝜆)?

Problem 1: Probability of an Observation
Sequence

LING83800 -- S24 70

• Q: What is 𝑃(𝑂|𝜆) ?
• A: the sum of the probabilities of all possible state sequences in the

HMM.

Crucial Data Structure: the Trellis

LING83800 -- S24 71

Dynamic Programming Solution: Forward
Algorithm

LING83800 -- S24 72

Simply sum the probabilities
rather than picking the most
likely one

Forward Algorithm

• The Forward algorithm gives the sum of all paths through an HMM
efficiently.

• This is the total probability of the output sequence
𝑃(𝑂|𝜆)

Discussion question:
How is this different from just using an N-gram language model to get

the probability of the output sequence? Is this better?

LING83800 -- S24 73

Using HMMs

• Viterbi algorithm* is an efficient solution to finding the most
probable sequence of hidden states that could have generated the
observed sequence

• Also called the “Viterbi labeling”

• We’ll also briefly mention two additional algorithms:
• Finding the total probability of an observed string according to an HMM
• Finding the most likely state at any given point

LING83800 -- S24 74https://en.wikipedia.org/wiki/Andrew_Viterbi

Most likely labels

• Given an HMM (𝜎, 𝜏) and an observed sequence of words X, what is
the most likely label sequence 2𝑦?

2𝑦 = 𝑎𝑟𝑔0𝑚𝑎𝑥(𝑥, 𝑦)

• In principle we could solve this by enumerating all possible Y, and
finding the one that maximized P(x,y)

• But this grows exponentially with the length of the sentence (n)

LING83800 -- S24 75

How bad is the brute force solution?

• Assume that every word had exactly two possible tags.

• Then a string of length one has two possible sequences,
• A sequence of two word has 4 possible state sequences
• … a sequence of n words has 2. possible state sequences

Pick a random sentence out of the New York Times: it has 38 words.
• 223 	≅ 10-4	 i.e. a trillion.

LING83800 -- S24 76

Dynamic Programming Solution: Viterbi
decoding

LING83800 -- S24 77

Finding the probability of the most likely solution for the
prefix X up to position i that ends in state y

We can compute all our μ_y(i) by starting on
the left and working our way to the right

We next go from time (i-1) to time i as follows:

Dynamic Programming Solution: Viterbi
decoding

LING83800 -- S24 78

At each stage we need look
backward only one step because
the new maximum probability
must be the continuation from
the maximum probability at one
of the previous states.

Dynamic Programming Solution: Viterbi
decoding

LING83800 -- S24 79

• Computation starts at the left by
setting 𝜇⊳ 0 = 1

• Moving to word 1, we need to
compute 𝜇' 1 and 𝜇(1
• This is straightforward since there

is only one possible prior state
• 𝜇' 1 = 𝜇⊳ 0 ∗ 𝜏',)*+,- ∗ 𝜎⊳,'
• 𝜇' 1 = 1.0 ∗ 0.3 ∗ 0.4
• 𝜇' 1 = 0.12

• Moving to word 2, there is only one
possible generating state with non-
zero value (namely ‘N’), but we need
to compute the two possible
predecessors at i=1
• …

• Moving to word 3…

Viterbi Algorithm Complexity

LING83800 -- S24 80

• Naïve approach requires exponential time to
evaluate all NT state sequences

• Forward algorithm using dynamic programming
takes O(N2T) computations

(Where T is the length of the sentence, and N is
the size of the tag set)

How did the Forward algorithm (for sequence
likelihood) related to Viterbi (for most probably

tag path)?

LING83800 -- S24 81

Problem 2: Decoding

LING83800 -- S24 82

• The Forward algorithm gives the sum of all paths
through an HMM efficiently.
• Here, we want to find the highest probability path.
• We want to find the state sequence Q=q1…qT, such

that

Q= argmax
Q'

P(Q' |O,l)

Viterbi Algorithm

LING83800 -- S24 83

• Just like the forward algorithm, but instead of
summing over transitions from incoming states,
compute the maximum

• Forward:

• Viterbi Recursion:

1
1

() () ()
N

t t ij j t
i

j i a b oa a -
=

é ù= ê úë û
å

11
max () ()() t ijt j ti N

i a b oj dd -£ £
é ù= ë û

Viterbi Algorithm

LING83800 -- S24 84

• Just like the forward algorithm, but instead of
summing over transitions from incoming states,
compute the maximum

• Forward:

• Viterbi Recursion:

1
1

() () ()
N

t t ij j t
i

j i a b oa a -
=

é ù= ê úë û
å

11
max () ()() t ijt j ti N

i a b oj dd -£ £
é ù= ë û

Tau: probability of generating output
word “o” from tag state “j” (at time “t”)

Sigma: probability of transitioning
from state “i” to state “j”

Probability of getting to state “i” at time
“t-1”

Not quite what we want…

LING83800 -- S24 85

• Viterbi recursion computes the maximum probability
path to state j at time t given that the partial
observation o1 … ot has been generated

• But we want the path itself that gives the maximum
probability
• Solution:

1. Keep backpointers
2. Find
3. Chase backpointers from state j at time T to find state

sequence (backwards)

11
max () ()() t ijt j ti N

i a b oj dd -£ £
é ù= ë û

argmax ()Tj
jd

Viterbi Algorithm

LING83800 -- S24 86

Let T = # of part-of-speech tags
 W = # of words in the sentence
/* Initialization Step */
for t = 1 to T
 Score(t, 1) = Pr(Word1| Tagt) * Pr(Tagt| φ)
 BackPtr(t, 1) = 0;
/* Iteration Step */
for w = 2 to W
 for t = 1 to T
 Score(t, w) = Pr(Wordw| Tagt) *MAXj=1,T(Score(j, w-1) * Pr(Tagt| Tagj))
 BackPtr(t, w) = index of j that gave the max above
/* Sequence Identification */
Seq(W) = t that maximizes Score(t,W)
for w = W -1 to 1
 Seq(w) = BackPtr(Seq(w+1),w+1)

LING83800 -- S24 87

Let T = # of part-of-speech tags
 W = # of words in the sentence
/* Initialization Step */
for t = 1 to T
 Score(t, 1) = Pr(Word1| Tagt) * Pr(Tagt| φ)
 BackPtr(t, 1) = 0;
/* Iteration Step */
for w = 2 to W
 for t = 1 to T
 Score(t, w) = Pr(Wordw| Tagt) *MAXj=1,T(Score(j, w-1) * Pr(Tagt| Tagj))
 BackPtr(t, w) = index of j that gave the max above
/* Sequence Identification */
Seq(W) = t that maximizes Score(t,W)
for w = W -1 to 1
 Seq(w) = BackPtr(Seq(w+1),w+1)

Viterbi Algorithm

LING83800 -- S24 88

Let T = # of part-of-speech tags
 W = # of words in the sentence
/* Initialization Step */
for t = 1 to T
 Score(t, 1) = Pr(Word1| Tagt) * Pr(Tagt| φ)
 BackPtr(t, 1) = 0;
/* Iteration Step */
for w = 2 to W
 for t = 1 to T
 Score(t, w) = Pr(Wordw| Tagt) *MAXj=1,T(Score(j, w-1) * Pr(Tagt| Tagj))
 BackPtr(t, w) = index of j that gave the max above
/* Sequence Identification */
Seq(W) = t that maximizes Score(t,W)
for w = W -1 to 1
 Seq(w) = BackPtr(Seq(w+1),w+1)

Another inner loop,
But we’re only
keeping the best path
to each possible prior
tag --> still an
exponential reduction
in computation
compared to the
brute-force solution

Probability up to this point for
the prior tag j

(The backpointers keep track of
the total path to that tag, but
here we “don’t care”)

Viterbi Algorithm

LING83800 -- S24 89

Let T = # of part-of-speech tags
 W = # of words in the sentence
/* Initialization Step */
for t = 1 to T
 Score(t, 1) = Pr(Word1| Tagt) * Pr(Tagt| φ)
 BackPtr(t, 1) = 0;
/* Iteration Step */
for w = 2 to W
 for t = 1 to T
 Score(t, w) = Pr(Wordw| Tagt) *MAXj=1,T(Score(j, w-1) * Pr(Tagt| Tagj))
 BackPtr(t, w) = index of j that gave the max above
/* Sequence Identification */
Seq(W) = t that maximizes Score(t,W)
for w = W -1 to 1
 Seq(w) = BackPtr(Seq(w+1),w+1)

Done once we find the best
tag that could generate last
word

Just need to recurse through
the back-pointers

Viterbi Algorithm

Check in: Given the pseudo-code from the
previous slide could you implement the Viterbi
algorithm right now?

If not, what is the most confusing part?

LING83800 -- S24 90

The Three Basic HMM Problems

LING83800 -- S24 91

• Problem 1 (Evaluation): Given the observation sequence O=o1,…,oT
and an HMM model 𝜆 = (𝐴, 𝐵, 𝜋), how do we compute the
probability of O given the model?

• Problem 2 (Decoding): Given the observation sequence O and an
HMM model 𝜆, how do we find the state sequence that best explains
the observations?

• Problem 3 (Learning): How do we adjust the model parameters 𝜆 =
(𝐴, 𝐵, 𝜋), to maximize 𝑃(𝑂|𝜆)?

So, we have O, and know what our state vocabulary is...

... but we don’t know transition or emission probabilities.

We can use Baum-Welch algorithm (a.k.a. Forward-Backward
algorithm) to iteratively estimate A and B.

Lloyd WelchLeonard Baum

92LING83800 -- S24

Recall from before that the forward probability αt(i) is the
probability of ending up in state i given observations O1:t.

A related property is the backward probability βt(i), which
represents the probability of seeing observations Ot:T, given
that we are currently in state i at time t.

This is calculated using the backward algorithm, which is very
similar to the forward algorithm (but in reverse!).

93

Forward-Backward

LING83800 -- S24 94

We’re not going to cover the Forward-Backward algorithm here… but
just know that it:

is a dynamic programming solution (like Viterbi) for estimating the
optimal parameter values for an HMM (transition and emission / Sigma
and Tau probability) without any labeled training data

The intuition behind how this works is as follows

Forward-Backward intuition

LING83800 -- S24 95

• The intuition for how this works is that we start with a (very bad) guess for Sigma and Tau.
• We use those to estimate

• If we had an estimate of the probability of transition i→j occurring at each time t, we could sum
them to get the total count for i→j.

• We use those estimates to calculate new values for Sigma and Tau
• Which in turns gives us new transition estimates
• Which in turns gives us new Sigma and Tau estimates
• …
• You repeat that process until the algorithm converges (extremely little change in the parameters

from one iteration to the next) or we give up at stop after a large number of iterations

Unsupervised tagging

LING83800 -- S24 96

Obviously this just sounds cool (😎). A machine learning model without any
labeled training data?

• However, the results are often “strange” (they represent *some* way to
categorize the data, but not exactly the same linguistically constrained way
that we’d like)

• And perform worse compared to results from models trained on labeled
data (supervised training)

• E.g., Garrette & Baldridge (2013) outperformed an unsupervised tagger
with just two hours worth of annotation time, in two languages—
Kinyarwanda and Malagasy—they did not know ahead of time.

