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Generative Classifiers (Reference Sheet)1

1 Introduction
Machine learning (ML) is the study of algorithms that can “learn” to perform tasks without explicit instruction. ML plays many roles
in linguistics, and in speech & language technology, it is most commonly used to classify (i.e., label) ambiguous linguistic signals or
events. In classification problems, we are given some observation x and asked to predict an associated class (or label) ŷ ∈ Y where
Y is a finite set. For example, x could be a newspaper article and ŷ could be its predicted genre, x could be a tweet and ŷ could predict
whether it is hate speech, or perhaps x could be a word and ŷ could be its predicted part of speech.

Supervision It is occasionally possible to make useful predictions of this sort in an unsupervised scenario. But most applications
use supervision, that is, “gold” x, y pairs produced by human annotators and used to train the classification algorithm.2 During
training, we attempt to learn a decision function R ⊆ X ×Y ; that is, a function from observations to classes.

1.1 Classes of classifiers
Breiman (2001) describes “two cultures”3 in the use of statistical modeling:

• Under one culture we posit a stochastic model which is responsible for the observed data.
• The other “culture” assumes that the stochastic process responsible for the observed data is complex and unknowable (a black
box), and rather than attempting to model the distribution itself, attempts to learn the decision function directly.

A related, somewhat more formal, distinction is proposed by Ng and Jordan (2002):

• Generative classifiers compute a joint probability distribution P(x, y), using P(y | x) as computed by Bayes’ rule:

R = argmax
y

P(y | x) (1)

• Discriminative classifiers either directly estimate the conditional distribution P(y | x), or induce R directly, ignoring both
the joint and conditional distributions.

Discriminative classifiers tend to have lower theoretical error bounds, and may be preferable on the basis of simplicity:

…one should solve the problem directly and never solve a more general problem as an intermediate step. (Vapnik 1998:12)

Software note
The Python library Scikit-learn (sklearn; Pedregosa et al. 2011— https://scikit-learn.org/) is a comprehensive collection of
carefully implemented machine learning methods including naïve Bayes, logistic regression, and perceptron classifiers. In NLTK (Bird,
Klein, & Loper 2009), the module nltk.classify— https://www.nltk.org/api/nltk.classify.html—also has implementa-
tions of several types of classifier. In many cases though, it is necessary or desirable to roll your own.

2 Features
In classification problems, we rarely define probability distributions or decision functions using raw observations x ∈ X directly.
Instead we define some feature extraction function Φ ⊆ X ×D. This function takes observations in X as inputs and maps them
onto a feature space, D. Designing feature functions for a given classification problem is known as feature engineering.4

1Notation used here has been adapted from Ng and Jordan (2002) and previous iterations put together by Kyle Gorman
2For instance, unsupervised part-of-speech tagging has been studied for 25 years (Merialdo 1994), but the best results are quite a bit worse than can be obtained

with as little as two hours of human annotation (Garrette & Baldridge 2013).
3Breiman uses the terms “data modeling culture” and “algorithmic modeling culture” for these two enterprises respectively, though I find those names misleading

in the current context
4Feature engineering is more of an art than a science, requiring both domain knowledge and practice. One of the major insights motivating neural networks is the

belief that their hidden layers “learn” complex and expressive feature extraction functions given trivial input features.
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2.1 Binary encoding
We assume, without loss of generality, that the feature space consists of binary vectors of length n; that is, D = {0, 1}n. For certain
types of classifiers, features can also be multinomial categorical (including ordinal) and numerical variables drawn from some known
distribution, like a Gaussian or a Poisson distribution. In other cases, we encode these variables using binary features.

Multinomial variables Categorical variables which have
n > 2 unique values can be encoded as a sequence of
n − 1 binary variables. The most common strategy is
known as one-hot (or dummy, or treatment) encoding.
For example, to represent the casing of a token—an im-
portant feature for part-of-speech tagging or named en-
tity recognition—we might use a categorical variable X =

{dc, lower,mixed, title, upper}. We then can exactly encode
this using {0, 1}4 like so:

dc → [0, 0, 0, 0]

lower → [1, 0, 0, 0]

mixed → [0, 1, 0, 0]

title → [0, 0, 1, 0]

upper → [0, 0, 0, 1]

Numerical variables Numerical (i.e., integral or contin-
uous variables) can also be approximately encoded as a se-
quence of n− 1 binary variables after grouping the values of
the variable into n bins. While there are many ways to bin
numerical variables, one of the simplest is to partition the
variable into n empirical quantiles and then one-hot encode
the quantile labels using n− 1 binary variables. For instance,
quartiles can be encoded using {0, 1}3:

1st quartile → [0, 0, 0]

2st quartile → [1, 0, 0]

3rd quartile → [0, 1, 0]

4th quartile → [0, 0, 1]

2.2 Feature sparsity
A feature vector (or feature function) is said to be sparse when the vast majority of values in the vector are 0. In such cases, it is often
more efficient to store only those feature values which are non-zero.

3 Generative classification: the naïve Bayes classifier
For simplicity, consider a supervised binary classification task. Let each observation be a x ∈ X , y ∈ Y pair where Y = {0, 1}. Given
a feature extraction function Φ ⊆ X × {0, 1}n, let F = Φ(x). Then, let S denote a finite training set drawn from F ×Y .

The simplest generative classifier is the naïve Bayes classifier. Despite its simplicity and the naïveity of its underlying assumptions, it
is said to be “unreasonably effective” (Zhang 2004) at simple problems.

3.1 Parameters
The parameters of this model are given by two probability distributions. The first is the maximum likelihood estimate (MLE) of the
probability that y = 1, or

P̂(y = 1) =
C(y = 1)

|S| (2)

where C gives the count of some event in S and |S| is the size of the training set. The second is the MLE conditional probability of each
(true) feature value given that y = 1, or

P̂(Fi = 1 | y = 1) =
C(Fi = 1, y = 1)

C(y = 1)
. (3)

Sometimes, we make use of add-α smoothing for this conditional probability distribution, so that
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P̂(Fi = 1 | y = 1) =
C(Fi = 1, y = 1) + α

C(y = 1) + 2α
. (4)

3.2 Decision rule
The naïve Bayes model is called “naïve” because it assumes that the probability of each feature value Fi is conditionally independent
of every other feature Fj ̸=i, or

P(Fi = 1 | Fj ̸=i = 1, . . . , y = 1) = P(Fi = 1 | y = 1). (5)

Under this assumption,

P̂(y = 1 | F ) = P̂(y = 1)
n

∏
i=1

P̂(Fi = 1 | y = 1). (6)

We can write the posterior probability of some class y′ ∈ Y as:

P̂(y = y′ | F ) = P̂(y = y′)
n

∏
i=1

P̂(Fi = 1 | y = y′). (7)

Then, to classify a feature vector F , we wish to pick the most probable class ŷ according to

ŷ = argmax
y′∈Y

P̂(y = y′ | F ) (8)

This is the maximum a posteriori (or MAP) decision rule. In the binary case, this simplifies as follows (thanks to the law of total
probability):

ŷ =

{
1 if P̂(y = 1 | F ) > .5

0 otherwise
(9)

3.3 Avoiding underflow
As is often the case when computing the product of probabilities, there is a risk of underflow. We can avoid this by storing logP̂(y = 1)
and logP̂(Fi | y = 1). The log posterior probability is

logP̂(y = y′ | F ) = logP̂(y = y′) +
n

∑
i=1

logP̂(Fi = 1 | y = y′) (10)

and the decision rule is

ŷ = argmax
y′∈Y

[
logP̂(y = y′ | F )

]
. (11)

3.4 Multinomial classification
It is straightforward to adapt this model for cases where |Y| > 2. To apply the decision rule (eq. 8), one needs merely to compute
P̂(y = y′) and P̂(Fi = 1 | y = y′) for all y′ ∈ Y , not just y = 1, and select whichever y′ gives the highest value to the posterior
probability distribution.
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