
Discriminative Classification

LING83800: METHODS IN COMPUTATIONAL LINGUISTICS II
May 6, 2024

Spencer Caplan

Today

1. Logistic Regression

2. Cross-validation

3. Perceptrons and Neural Nets

LING83800 -- S24 2

Naïve Bayes Recap

LING83800 -- S24 3

• Bag of words (order independent)

• Feature are assumed independent given a class

𝑃 𝑥!, … , 𝑥" 𝑐 = 𝑃 𝑥! 𝑐 …𝑃(𝑥"|𝑐)

Q: Is this really true?

Problems with assuming conditional
independence

LING83800 -- S24 4

• Correlated features à double counting evidence
• Since parameters are estimated independently

• Example: Predicting test scores
• Previous test score
• Height
• Age
• Etc.

• This hurts classifier accuracy and calibration

Logistic Regression

LING83800 -- S24 5

• Doesn’t assume features are independent

• Correlated features don’t “double count”

Generative vs. Discriminative Models

LING83800 -- S24 6

Naive Bayes is a generative classifier

Logistic regression is a is a discriminiative classifier

Generative vs. Discriminative Models

LING83800 -- S24 7

A generative model uses the likelihood term,
which expresses how to generate the features of
a document if we knew it was of class c.

A discriminative model attempts to directly
compute P(c|d).

It may learn to assign a high weight to document
features that directly improve its ability to
discriminate between classes

Unlike the generative model, good parameter
estimates for a discriminative model don’t help
it generate an example of one of the classes.

Generative models (like HMMs or Naïve
Bayes) make use of the likelihood term

Discriminative models (like logistic
regression) attempt to directly compute
P(c|d)

Components of Classifiers

LING83800 -- S24 8

1. Feature representation of the input

2. Classification function

3. Objective function

4. Algorithm to optimize the objective function

Components of Classifiers

LING83800 -- S24 9

1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent

Sentiment Classifier

LING83800 -- S24 10

Input: "Spiraling away from narrative control as its first
three episodes unreel, this series, abouta post-apocalyptic
future in which nearly everyone is blind, wastes the time
of Jason Momoa and Alfre Woodard, among others, on a
story that starts from a position of fun, giddy strangeness
and drags itself forward at a lugubriouspace."

Output: positive (1) or negative(0)

Sentiment Classifier

For sentiment classification, consider an input observation x, represented by
a vector of features [x1,x2,...,xn]. The classifier output y can be 1 (positive
sentiment) or 0 (negative sentiment). We want to estimate P(y = 1|x)

Logistic regression solves this task by learning, from a training set, a
vector of weights and a bias term

LING83800 -- S24 11

30 second linear algebra

LING83800 -- S24 12

6.4 • COSINE FOR MEASURING SIMILARITY 11

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and result.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v|=

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

vector length

6.4 • COSINE FOR MEASURING SIMILARITY 11

1 2 3 4 5 6

1

2 digital
 [1,1]

re
su

lt

 data

information
 [6,4] 3

4

Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and result.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v|=

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

30 second linear algebra: Cosine similarity

LING83800 -- S24 13

12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

Cosine similarity

LING83800 -- S24 14

• -1: vectors point in opposite
directions
• +1: vectors point in same directions
• 0: vectors are orthogonal

• Frequency is non-negative, so
cosine range 0-1

Cosine similarity is just the difference in angle

LING83800 -- S24 15

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
sio

n
1:

 ‘l
ar

ge
’

Dimension 2: ‘data’

Dot Product

LING83800 -- S24 16

Sentiment Classifier

For sentiment classification, consider an input observation x, represented by
a vector of features [x1,x2,...,xn]. The classifier output y can be 1 (positive
sentiment) or 0 (negative sentiment). We want to estimate P(y = 1|x)

Logistic regression solves this task by learning, from a training set, a
vector of weights and a bias term

LING83800 -- S24 17

But “z” here
is not a
probability

Sigmoid function

LING83800 -- S24 18

Probabilities in logistic regression

LING83800 -- S24 19

Decision boundary

Now we have a function that -- given an instance x -- computes the
probability P(y = 1|x). How do we make a decision?

For a test instance x, we say yes if the probability P(y = 1|x) is more than .5,
and no otherwise. We call .5 the decision boundary

LING83800 -- S24 20

Components of Classifiers

LING83800 -- S24 21

1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent

Feature Templates

LING83800 -- S24 22

• Typically “feature templates” are used to generate many features at
once

• For each word w:
• ${w}_count
• ${w}_islowercase
• ${w}_with_NOT_before_count

Extracting Features

LING83800 -- S24 23

Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords
x3 Does no appear? (binary feature)
x4 Number of 1st and 2nd personpronouns
x5 Does ! appear? (binary feature)
x6 Log of the word count for thedocument

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Extracting Features

LING83800 -- S24 24

Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords 2
x3 Does no appear? (binary feature)
x4 Number of 1st and 2nd personpronouns
x5 Does ! appear? (binary feature)
x6 Log of the word count for thedocument

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Extracting Features

LING83800 -- S24 25

Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords 2
x3 Does no appear? (binary feature) 1
x4 Number of 1st and 2nd personpronouns
x5 Does ! appear? (binary feature)
x6 Log of the word count for thedocument

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Extracting Features

LING83800 -- S24 26

Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords 2
x3 Does no appear? (binary feature) 1
x4 Number of 1st and 2nd personpronouns 3
x5 Does ! appear? (binary feature)
x6 Log of the word count for thedocument

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Extracting Features

LING83800 -- S24 27

Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords 2
x3 Does no appear? (binary feature) 1
x4 Number of 1st and 2nd personpronouns 3
x5 Does ! appear? (binary feature) 0
x6 Log of the word count for thedocument 4.15

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Word count = 64, ln(64) =4.15

Components of Classifiers

LING83800 -- S24 28

1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent

Computing Z

LING83800 -- S24 29

Var Definition Value Weight Product
x1 Count of positive lexiconwords 3 2.5 7.5
x2 Count of negative lexiconwords 2 -5.0 -10

x3 Does no appear? (binary feature) 1 -1.2 -1.2

x4 Num 1st and 2nd personpronouns 3 0.5 1.5

x5 Does ! appear? (binary feature) 0 2.0 0
x6 Log of the word count for thedoc 4.15 0.7 2.905

b bias 1 0.1 .1

Z = 0.805

Sigmoid(Z)

LING83800 -- S24 30

Var Definition Value Weight Product
x1 Count of positive lexiconwords 3 2.5 7.5
x2 Count of negative lexiconwords 2 -5.0 -10

x3 Does no appear? (binary feature) 1 -1.2 -1.2

x4 Num 1st and 2nd personpronouns 3 0.5 1.5

x5 Does ! appear? (binary feature) 0 2.0 0
x6 Log of the word count for thedoc 4.15 0.7 2.905

b bias 1 0.1 .1

σ(0.805)
=0.69

Components of Classifiers

LING83800 -- S24 31

1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent

Learning in Logistic Regression

How do we get the weights of the model? We need to learn the
parameters (weights + bias).

This requires 2 components:
1. An objective function or loss function that tells us the distance

between the system output and the gold output. We will use cross-
entropy loss.

2. An algorithm for optimizing the objective function. We will use
stochastic gradient descent to minimize the loss function.

LING83800 -- S24 32

Loss functions

LING83800 -- S24 33

Loss functions for probabilistic classification

• We use a loss function that prefers the correct class labels of the training example
to be more likely.

• Conditional MLE: Choose parameters w, b that maximize the (log) probabilities of
the true labels in the training data.

• The resulting loss function is the negative log likelihood loss, more commonly
called the cross entropy loss.

LING83800 -- S24 34

Loss functions for probabilistic classification

LING83800 -- S24 35

Loss functions for probabilistic classification

LING83800 -- S24 36

Cross-entropy loss

LING83800 -- S24 37

Cross-entropy loss: example

LING83800 -- S24 38

Why does minimizing this negative log probability dowhat we
want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be bigger if
it isconfused.

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Cross-entropy loss: example

LING83800 -- S24 39

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Why does minimizing this negative log probability dowhat we
want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be bigger if
it isconfused.

Cross-entropy loss: example

LING83800 -- S24 40

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Why does minimizing this negative log probability dowhat we
want? We want the loss to be smaller if the model’s
estimate is close to correct, and we want the loss to be bigger if
it isconfused.

Components of Classifiers

LING83800 -- S24 41

1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent

NB vs. LR: Parameter Learning

LING83800 -- S24 42

• Naïve Bayes:
– Learn conditional probabilities

independently by counting

• Logistic Regression:
– Learn weights jointly

Closed Form Solution

LING83800 -- S24 43

• a Closed Form Solution is a simple solution that
works instantly without any loops, functions etc

• e.g. the sum of integer from 1 to n

s= 0
for i in 1 to n

s = s + i

end for

print s

Iterative Algorithm

s = n(n +1)/2

Closed Form Solution

Gradient descent

LING83800 -- S24 44

Iteratively find minimum

LING83800 -- S24 45

w

Loss

w1

0

slope of loss at w1
is negative

wmin

(goal)

one step
of gradient

descent

There are many other issues to consider with
learning regression models like this

• But this is not a machine learning course!

LING83800 -- S24 46

Gradient Descent

LING83800 -- S24 47

Gradient Descent

LING83800 -- S24 48

Logistic Regression: Pros and Cons

LING83800 -- S24 49

• Doesn’t assume conditional independence of features
• Better calibrated probabilities
• Can handle highly correlated or overlapping features

• But NB is faster to train, less likely to overfit

Cross-Validation

LING83800 -- S24 50

Cross-validation slides adapted from:
Andrew W. Moore Carnegie Mellon

www.cs.cmu.edu/~awm

http://www.cs.cmu.edu/~awm

A regression problem

LING83800 -- S24 51

x

y

y = f(x) + noise

Can we learn f from this data?

Let’s consider three methods…

Liner Regression

LING83800 -- S24 52

x

y yest = β0+ β1x

Quadratic Regression

LING83800 -- S24 53

x

y yest = β0+ β1 x+ β2x2

”Join-the-dots”

LING83800 -- S24 54

x

y

Also known as piecewise
linear nonparametric

regression if you want to
feel fancy

Which is best?

LING83800 -- S24 55

x

y

x

y

Why not choose the method with the
best fit to the data?

What do we really want?

LING83800 -- S24 56

x

y

x

y

Why not choose the method with the
best fit to the data?

“How well are you going to predict future
data drawn from the same distribution?”

The test set method

LING83800 -- S24 57

x

y

1.Randomly choose 30%
of the data to be in a test
set

2.The remainder is a
training set

The test set method

LING83800 -- S24 58

x

y

1.Randomly choose 30%
of the data to be in a test
set

2.The remainder is a
training set

3.Perform your
regression on the training
set

(Linear regression example)

The test set method

LING83800 -- S24 59

x

y

1.Randomly choose 30%
of the data to be in a test
set

2.The remainder is a
training set

3.Perform your
regression on the training
set

4.Estimate your future
performance with the test
set

(Linear regression example)

Mean Squared Error = 2.4

The test set method

LING83800 -- S24 60

1.Randomly choose 30%
of the data to be in a test
set

2.The remainder is a
training set

3.Perform your
regression on the training
set

4.Estimate your future
performance with the test
set

x

y

Mean Squared Error = 0.9

(Quadratic regression example)

The test set method

LING83800 -- S24 61

1.Randomly choose 30%
of the data to be in a test
set

2.The remainder is a
training set

3.Perform your
regression on the training
set

4.Estimate your future
performance with the test
set

x

y

(Join the dots example)

Mean Squared Error = 2.2

The test set method

LING83800 -- S24 62

Good news:

• Very very simple

• Can then simply choose the method with the best test-set
score

Bad news:

• What’s the downside?

The test set method

LING83800 -- S24 63

Good news:

• Very very simple

• Can then simply choose the method with the best test-set
score

Bad news:

• Wastes data: we get an estimate of the best method to
apply to 30% less data

• If we don’t have much data, our test-set might just be
lucky or unlucky

We say the
“test-set
estimator of
performance
has high
variance”

LOOCV (Leave-one-out Cross Validation)

LING83800 -- S24 64

• For k=1 to R

1. Let (xk,yk) be the kth record

x

y

LOOCV (Leave-one-out Cross Validation)

LING83800 -- S24 65

• For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk) from the
dataset

x

y

LOOCV (Leave-one-out Cross Validation)

LING83800 -- S24 66

• For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk) from the
dataset

3. Train on the remaining R-1
datapoints

x

y

LOOCV (Leave-one-out Cross Validation)

LING83800 -- S24 67

• For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk) from the
dataset

3. Train on the remaining R-1
datapoints

4. Note your error (xk,yk)

• When you’ve done all points, report
the mean error.

x

y

LOOCV (Leave-one-out Cross Validation)

LING83800 -- S24 68

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily
remove (xk,yk) from the
dataset

3. Train on the
remaining R-1
datapoints

4. Note your
error (xk,yk)

When you’ve done all points, report
the mean error.

MSELOOCV
= 2.12

LOOCV (Leave-one-out Cross Validation)

LING83800 -- S24 69

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily
remove (xk,yk) from the
dataset

3. Train on the
remaining R-1
datapoints

4. Note your
error (xk,yk)

When you’ve done all points, report
the mean error.

MSELOOCV
= 0.962

LOOCV (Leave-one-out Cross Validation)

LING83800 -- S24 70

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily
remove (xk,yk) from the
dataset

3. Train on the
remaining R-1
datapoints

4. Note your
error (xk,yk)

When you’ve done all points, report
the mean error.

MSELOOCV
= 3.33

What kind of cross validation?

LING83800 -- S24 71

Downside Upside
Test-set Variance: unreliable

estimate of future
performance

Cheap

Leave-
one-out

Expensive.
Has some weird
behavior

Doesn’t
waste data

..can we get the best of both worlds?

K-fold Cross Validation

LING83800 -- S24 72

Randomly break the dataset into k partitions (in
our example we’ll have k=3 partitions colored
Red Green and Blue)

x

y

K-fold Cross Validation

LING83800 -- S24 73

Randomly break the dataset into k partitions (in
our example we’ll have k=3 partitions colored
Red Green and Blue)

For the red partition: Train on all the points not
in the red partition. Find the test-set sum of
errors on the red points.

x

y

K-fold Cross Validation

LING83800 -- S24 74

Randomly break the dataset into k partitions (in
our example we’ll have k=3 partitions colored
Red Green and Blue)

For the red partition: Train on all the points not
in the red partition. Find the test-set sum of
errors on the red points.

For the green partition: Train on all the points
not in the green partition.
Find the test-set sum of errors on the
green points.x

y

K-fold Cross Validation

LING83800 -- S24 75

Randomly break the dataset into k partitions (in
our example we’ll have k=3 partitions colored
Red Green and Blue)

For the red partition: Train on all the points not
in the red partition. Find the test-set sum of
errors on the red points.

For the green partition: Train on all the points
not in the green partition.
Find the test-set sum of errors on the
green points.

For the blue partition: Train on all the
points not in the blue partition. Find the
test-set sum of errors on the blue points.

Then report the mean error

x

y

Linear Regression
MSE3FOLD=2.05

K-fold Cross Validation

LING83800 -- S24 76

Randomly break the dataset into k partitions (in
our example we’ll have k=3 partitions colored
Red Green and Blue)

For the red partition: Train on all the points not
in the red partition. Find the test-set sum of
errors on the red points.

For the green partition: Train on all the points
not in the green partition.
Find the test-set sum of errors on the
green points.

For the blue partition: Train on all the
points not in the blue partition. Find the
test-set sum of errors on the blue points.

Then report the mean error

x

y

Quadratic Regression
MSE3FOLD=1.11

K-fold Cross Validation

LING83800 -- S24 77

Randomly break the dataset into k partitions (in
our example we’ll have k=3 partitions colored
Red Green and Blue)

For the red partition: Train on all the points not
in the red partition. Find the test-set sum of
errors on the red points.

For the green partition: Train on all the points
not in the green partition.
Find the test-set sum of errors on the
green points.

For the blue partition: Train on all the
points not in the blue partition. Find the
test-set sum of errors on the blue points.

Then report the mean error

x

y

Joint-the-dots
MSE3FOLD=2.93

What kind of Cross Validation?

LING83800 -- S24 78

Downside Upside
Test-set Variance: unreliable

estimate of future
performance

Cheap

Leave-
one-out

Expensive.
Has some weird behavior

Doesn’t waste data

10-fold Wastes 10% of the data.
10 times more expensive
than test set

Only wastes 10%. Only 10
times more expensive
instead of R times.

3-fold Wastier than 10-fold. More
Expensive than test set

Slightly better than test-
set

R-fold Identical to Leave-one-out

Perceptrons and Neural Nets

LING83800 -- S24 79

Universal Machine Learning Diagram

LING83800 -- S24 80

Things to
be

classified

Feature
Vector

Represent-
ation

Magic
Classifier

Box

Classification
Decision

Naïve Bayes Classifiers
are one example

Today:
Perceptron,
SVM and Friends

Generative and Discriminative Models

LING83800 -- S24 81

• Generative question:
• “How can we model the joint distribution of the classes and the

features?”
• Naïve Bayes, Markov Models, HMMs all generative

• Discriminative question:
• “What features distinguish the classes from one another?”

Recap

Naïve Bayes: generative classifier
• Need to specify features ahead of time
• Parameters / weights directly estimated from corpus

• Logistic Regression: discriminative classifier
• Need to specify features ahead of time
• Parameters / weights learned iteratively
• Specified particular function (sigmoid) to convert z values into probabilities, handle non-

linear input

• Neural Networks:
• Glue together many classifiers
• Allow many different non-linear function transformations
• Learn both the features and weights iteratively

LING83800 -- S24 82

Logistic Regression

LING83800 -- S24 83

This is a real number,
not a probability!

Sigmoid

LING83800 -- S24 84

But without the sigmoid it’s just a linear
function
• Regressing a line

LING83800 -- S24 85

But without the sigmoid it’s just a linear
function
• Classification:

LING83800 -- S24 86

Generative vs. Discriminative: Visual Example

LING83800 -- S24 87

Modeling what sort of bizarre distribution produced these
training points is hard, but distinguishing the classes is a piece of
cake! chart from MIT tech report #507, Tony Jebara

Linear Classification: Informal…

LING83800 -- S24 88

Find a (line, plane, hyperplane)
that divides the red points from
the blue points….

Hyperplane

• Just a subspace whose dimension is one less than that of its
containing space.

• If the containing space is 3-dimensional, then its hyperplanes are 2-d
• If the containing space is 2-dimensional, then its hyperplanes are 1-d

(lines)

LING83800 -- S24 89

Linear Classification: Slightly more formal

LING83800 -- S24 90

sign(y) tell us the class:
 + - blue
 - - red
(Vectors normalized to length 1, and we assume
that the hyperplane passes through 0,0)

Linear Classification: Slightly more formal

LING83800 -- S24 91

sign(y) tell us the class:
 + - blue
 - - red
(Vectors normalized to length 1, and we assume
that the hyperplane passes through 0,0)

Perceptron

LING83800 -- S24 92

Perceptron is an algorithm for binary classification
that uses a linear prediction function:

f(x) =
1, w*x + b ≥ 0
-1, w*x + b < 0

This is a step function, which reads:
• the output is 1 if “w*x + b ≥ 0” is true, and the

output is -1 if instead “w*x + b < 0” is true

Perceptron

LING83800 -- S24 93

Perceptron is an algorithm for binary classification
that uses a linear prediction function:

f(x) = 1, w*x + b ≥ 0
-1, w*x + b < 0

By convention, the two classes are +1 or -1.

Perceptron

LING83800 -- S24 94

Perceptron is an algorithm for binary classification
that uses a linear prediction function:

f(x) = 1, w*x + b ≥ 0
-1, w*x + b < 0

By convention, ties are broken in favor of the
positive class.
• If “w*x + b” is exactly 0, output +1 instead of -1.

Perceptron

LING83800 -- S24 95

The w parameters are unknown. This is what we
have to learn.

f(x) = 1, w*x + b ≥ 0
-1, w*x + b < 0

In the same way that linear regression learns the
slope parameters to best fit the data points,
perceptron learns the parameters to best separate
the instances.

Perceptron: Learning the Weights

LING83800 -- S24 96

The perceptron algorithm learns the weights by:
1. Initialize all weights w to 0
2. Iterate through the training data. For each training

instance, classify the instance.
a) If the prediction (the output of the classifier) was correct, don’t do

anything. (It means the classifier is working, so leave it alone!)
b) If the prediction was wrong, modify the weights by using the update

rule.
3. Repeat step 2 some number of times (more on this later).

Perceptron: Learning the Weights

LING83800 -- S24 97

What does an update rule do?

• If the classifier predicted an instance was negative
but it should have been positive…

Currently: w*xi + b < 0
Want: w*xi+ b ≥0
• Adjust the weights w so that this function value moves

toward positive
• If the classifier predicted positive but it should have been

negative, shift the weights so that the value moves toward
negative.

Perceptron: Learning the Weights

LING83800 -- S24 98

The perceptron
update rule:
wj += (yi – f(xi)) xij

Let’s assume xij is 1 in this example for now.

wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i

Perceptron: Learning the Weights

LING83800 -- S24 99

wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i

The perceptron
update rule:
wj += (yi – f(xi)) xij

This term is 0 if the prediction was correct (yi = f(xi)).
• Then the entire update rule is 0, so no change is made.

Perceptron: Learning the Weights

LING83800 -- S24 100

wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i

The perceptron
update rule:
wj += (yi – f(xi)) xij

If the prediction is wrong:
• This term is +2 if yi = +1 and f(xi) = -1.
• This term is -2 if yi = -1 and f(xi) = +1.
The sign of this term indicates the direction of the
mistake.

Perceptron: Learning the Weights

101

wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i

The perceptron
update rule:
wj += (yi – f(xi)) xij

If the prediction is wrong:
• The (yi – f(xi)) term is +2 if yi = +1 and f(xi) = -1.

• This will increase wj (still assuming xij is 1)…
• …which will increase w*xi + b…
• …which will make it more likely w*xi + b ≥ 0 next time (which is what we

need for the classifier to be correct)LING83800 -- S24

Perceptron: Learning the Weights

LING83800 -- S24 102

wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i

The perceptron
update rule:
wj += (yi – f(xi)) xij

If xij is 0, there will be no update.
• The feature does not affect the prediction for this instance,

so it won’t affect the weight updates.
If xij is negative, the sign of the update flips.

Perceptron Update Example

LING83800 -- S24 103

If is supposed to be on
the other side….

i iw w y x= +
  

Perceptron Learning Algorithm

LING83800 -- S24 104

Linear Separability

LING83800 -- S24 105

The training instances are linearly separable if
there exists a hyperplane that will separate the
two classes.

Linear Separability

LING83800 -- S24 106

If the training instances are not linearly
separable, the classifier will always get some
predictions wrong.
• You need to implement some type of stopping criteria

for when the algorithm will stop making updates, or it
will run forever.

• Usually this is specified by running the algorithm for a
maximum number of iterations or epochs.

Learning Rate

LING83800 -- S24 107

Let’s make a modification to the update rule:

wj += η (yi – f(xi)) xij

where η is called the learning rate or step size.
• When you update wj to be more positive or

negative, this controls the size of the change you
make (or, how large a “step” you take).
• If η=1 (a common value), then this is the same

update rule from the earlier slide.

Learning Rate

•How to choose the step size?
• If η is too small, the algorithm will be slow because the updates

won’t make much progress.

• If η is too large, the algorithm will be slow because the
updates will “overshoot” and may cause previously correct
classifications to become incorrect.

LING83800 -- S24 108

Perceptrons

LING83800 -- S24 109

LING83800 -- S24 110

LING83800 -- S24 111

Neural Networks

LING83800 -- S24 112

Neural Networks

LING83800 -- S24 113

Neural Networks

LING83800 -- S24 114

Many complications

LING83800 -- S24 115

Which non-linear
function to use?

Stochastic gradient descent is more
complicated than the perceptron learning
algorithm

What features to use? (Width)

How many hidden layers to use? (Depth)

Recap

Naïve Bayes: generative classifier
• Need to specify features ahead of time
• Parameters / weights directly estimated from corpus

• Logistic Regression: discriminative classifier
• Need to specify features ahead of time
• Parameters / weights learned iteratively
• Specified particular function (sigmoid) to convert z values into probabilities, handle non-

linear input

• Neural Networks:
• Glue together many perceptrons
• Allow many different non-linear function transformations
• Learn both the features and weights iteratively

LING83800 -- S24 116

