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Today

1. Logistic Regression

2. Cross-validation

3. Perceptrons and Neural Nets
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Naïve Bayes Recap
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• Bag of words (order independent)

• Feature are assumed independent given a class

𝑃 𝑥!, … , 𝑥" 𝑐 = 𝑃 𝑥! 𝑐 …𝑃(𝑥"|𝑐)

Q: Is this really true?



Problems with assuming conditional 
independence
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• Correlated features à double counting evidence
• Since parameters are estimated independently

• Example: Predicting test scores
• Previous test score
• Height
• Age
• Etc.

• This hurts classifier accuracy and calibration



Logistic Regression
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• Doesn’t assume features are independent

• Correlated features don’t “double count”



Generative vs. Discriminative Models
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Naive Bayes is a generative classifier

Logistic regression is a is a discriminiative classifier



Generative vs. Discriminative Models
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A generative model uses the likelihood term, 
which expresses how to  generate the features of 
a document if we knew it was of class c.

A discriminative model attempts to directly 
compute P(c|d).

It may learn to assign a high weight to document 
features that directly  improve its ability to 
discriminate between classes

Unlike the generative model, good parameter 
estimates for a  discriminative model don’t help 
it generate an example of one of the  classes.

Generative models (like HMMs or Naïve 
Bayes) make use of the likelihood term

Discriminative models (like logistic 
regression) attempt to directly compute 
P(c|d)



Components of Classifiers
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1. Feature representation of the input

2. Classification function

3. Objective function

4. Algorithm to optimize the objective function



Components of Classifiers
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1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent



Sentiment Classifier
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Input: "Spiraling away from  narrative control as its first 
three  episodes unreel, this series, abouta  post-apocalyptic 
future in which  nearly everyone is blind, wastes the  time 
of Jason Momoa and Alfre  Woodard, among others, on a 
story  that starts from a position of fun,  giddy strangeness 
and drags itself  forward at a lugubriouspace."

Output: positive (1) or negative(0)



Sentiment Classifier

For sentiment classification, consider an input observation  x, represented by 
a vector of features [x1,x2,...,xn]. The  classifier output y can be 1 (positive 
sentiment) or 0  (negative sentiment). We want to estimate P(y = 1|x)

Logistic regression solves this task by learning, from a  training set, a 
vector of weights and a   bias    term
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30 second linear algebra
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6.4 • COSINE FOR MEASURING SIMILARITY 11
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and result.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v|=

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

vector length
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and result.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v|=

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:



30 second linear algebra: Cosine similarity
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12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear



Cosine similarity
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• -1: vectors point in opposite 
directions 
• +1:  vectors point in same directions
• 0: vectors are orthogonal

• Frequency is non-negative, so  
cosine range 0-1



Cosine similarity is just the difference in angle
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Dot Product
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Sentiment Classifier

For sentiment classification, consider an input observation  x, represented by 
a vector of features [x1,x2,...,xn]. The  classifier output y can be 1 (positive 
sentiment) or 0  (negative sentiment). We want to estimate P(y = 1|x)

Logistic regression solves this task by learning, from a  training set, a 
vector of weights and a   bias    term
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But “z” here 
is not a 
probability



Sigmoid function
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Probabilities in logistic regression
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Decision boundary

Now we have a function that -- given an instance x -- computes the 
probability P(y = 1|x). How do we make a  decision?

For a test instance x, we say yes if the probability P(y = 1|x)  is more than .5, 
and no otherwise. We call .5 the decision  boundary
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Components of Classifiers
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1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent



Feature Templates
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• Typically “feature templates” are used to generate many features at 
once

• For each word w:
• ${w}_count
• ${w}_islowercase
• ${w}_with_NOT_before_count



Extracting Features
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Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords
x3 Does no appear? (binary feature)
x4 Number of 1st and 2nd personpronouns
x5 Does ! appear? (binary feature)
x6 Log of the word count for thedocument

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .



Extracting Features
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Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords 2
x3 Does no appear? (binary feature)
x4 Number of 1st and 2nd personpronouns
x5 Does ! appear? (binary feature)
x6 Log of the word count for thedocument

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .



Extracting Features

LING83800 -- S24 25

Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords 2
x3 Does no appear? (binary feature) 1
x4 Number of 1st and 2nd personpronouns
x5 Does ! appear? (binary feature)
x6 Log of the word count for thedocument

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .



Extracting Features
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Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords 2
x3 Does no appear? (binary feature) 1
x4 Number of 1st and 2nd personpronouns 3
x5 Does ! appear? (binary feature)
x6 Log of the word count for thedocument

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .



Extracting Features
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Var Definition Value
x1 Count of positive lexiconwords 3
x2 Count of negative lexiconwords 2
x3 Does no appear? (binary feature) 1
x4 Number of 1st and 2nd personpronouns 3
x5 Does ! appear? (binary feature) 0
x6 Log of the word count for thedocument 4.15

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Word count = 64, ln(64) =4.15



Components of Classifiers
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1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent



Computing Z
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Var Definition Value Weight Product
x1 Count of positive lexiconwords 3 2.5 7.5
x2 Count of negative lexiconwords 2 -5.0 -10

x3 Does no appear? (binary feature) 1 -1.2 -1.2

x4 Num 1st and 2nd personpronouns 3 0.5 1.5

x5 Does ! appear? (binary feature) 0 2.0 0
x6 Log of the word count for thedoc 4.15 0.7 2.905

b bias 1 0.1 .1

Z = 0.805



Sigmoid(Z)
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Var Definition Value Weight Product
x1 Count of positive lexiconwords 3 2.5 7.5
x2 Count of negative lexiconwords 2 -5.0 -10

x3 Does no appear? (binary feature) 1 -1.2 -1.2

x4 Num 1st and 2nd personpronouns 3 0.5 1.5

x5 Does ! appear? (binary feature) 0 2.0 0
x6 Log of the word count for thedoc 4.15 0.7 2.905

b bias 1 0.1 .1

σ(0.805)
=0.69



Components of Classifiers
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1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent



Learning in Logistic Regression

How do we get the weights of the model? We need to learn the  
parameters (weights + bias).

This requires 2  components:
1. An objective function or loss function that tells us the  distance 

between the system output and the gold  output. We will use cross-
entropy loss.

2. An algorithm for optimizing the objective function. We  will use 
stochastic gradient descent to minimize the loss  function.
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Loss functions
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Loss functions for probabilistic classification

• We use a loss function that prefers the correct class labels of  the training example 
to be more likely.

• Conditional MLE: Choose  parameters w, b that maximize the (log) probabilities of 
the  true labels in the training data.

• The resulting loss function is the negative log likelihood loss,  more commonly 
called the cross entropy loss.

LING83800 -- S24 34



Loss functions for probabilistic classification
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Loss functions for probabilistic classification
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Cross-entropy loss
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Cross-entropy loss: example
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Why does minimizing this negative log probability dowhat  we
want? We want the loss to be smaller if the model’s  
estimate is close to correct, and we want the loss to be  bigger if 
it isconfused.

It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .



Cross-entropy loss: example
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It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Why does minimizing this negative log probability dowhat  we
want? We want the loss to be smaller if the model’s  
estimate is close to correct, and we want the loss to be  bigger if 
it isconfused.



Cross-entropy loss: example
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It's hokey. There are virtually no surprises , and the writing is second-rate .
Sowhy was it so enjoyable? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Why does minimizing this negative log probability dowhat  we
want? We want the loss to be smaller if the model’s  
estimate is close to correct, and we want the loss to be  bigger if 
it isconfused.



Components of Classifiers
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1. Feature representation of the input
2. Classification function

• Used to compute our estimate of p(y|x)
• For logistic regression this is the sigmoid

3. Objective function
• Used during learning to minimize error on the training example.
• For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function
• Here that’s stochastic gradient descent



NB vs. LR: Parameter Learning
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• Naïve Bayes:
– Learn conditional probabilities

independently by counting

• Logistic Regression:
– Learn weights jointly



Closed Form Solution
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• a Closed Form Solution is a simple solution  that 
works instantly without any loops,  functions etc

• e.g. the sum of integer from 1 to n

s= 0
for i in 1 to n  

s = s + i

end for  

print s

Iterative Algorithm

s = n(n +1 )/2

Closed Form Solution



Gradient descent
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Iteratively find minimum
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w

Loss

w1

0

slope of loss at w1  
is negative

wmin

(goal)

one step  
of gradient  

descent



There are many other issues to consider with 
learning regression models like this

• But this is not a machine learning course!
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Gradient Descent
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Gradient Descent
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Logistic Regression: Pros and Cons
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• Doesn’t assume conditional independence of features
• Better calibrated probabilities
• Can handle highly correlated or overlapping features

• But NB is faster to train, less likely to overfit



Cross-Validation
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Cross-validation slides adapted from:
Andrew W. Moore  Carnegie Mellon

www.cs.cmu.edu/~awm

http://www.cs.cmu.edu/~awm


A regression problem
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x

y

y = f(x) + noise

Can we learn f from this data?

Let’s consider three methods…



Liner Regression
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x

y yest = β0+ β1x



Quadratic Regression
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x

y yest = β0+ β1 x+ β2x2



”Join-the-dots”

LING83800 -- S24 54

x

y

Also known as piecewise  
linear nonparametric  

regression if you want to 
feel fancy



Which is best?
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x

y

x

y

Why not choose the method with the  
best fit to the data?



What do we really want?
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x

y

x

y

Why not choose the method with the  
best fit to the data?

“How well are you going to predict  future 
data drawn from the same  distribution?”



The test set method
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x

y

1.Randomly choose  30% 
of the data to be in a test
set

2.The remainder is a 
training set



The test set method
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x

y

1.Randomly choose  30% 
of the data to be in a test
set

2.The remainder is a 
training set

3.Perform your  
regression on the training  
set

(Linear regression example)



The test set method
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x

y

1.Randomly choose  30% 
of the data to be in a test
set

2.The remainder is a 
training set

3.Perform your  
regression on the training  
set

4.Estimate your future  
performance with the test  
set

(Linear regression example)  

Mean Squared Error = 2.4



The test set method
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1.Randomly choose  30% 
of the data to be in a test
set

2.The remainder is a 
training set

3.Perform your  
regression on the training  
set

4.Estimate your future  
performance with the test  
set

x

y

Mean Squared Error = 0.9

(Quadratic regression example)



The test set method
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1.Randomly choose  30% 
of the data to be in a test
set

2.The remainder is a 
training set

3.Perform your  
regression on the training  
set

4.Estimate your future  
performance with the test  
set

x

y

(Join the dots example)  

Mean Squared Error = 2.2



The test set method
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Good news:

• Very very simple

• Can then simply choose the method with  the best test-set
score

Bad news:

• What’s the downside?



The test set method
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Good news:

• Very very simple

• Can then simply choose the method with  the best test-set
score

Bad news:

• Wastes data: we get an estimate of the  best method to 
apply to 30% less data

• If we don’t have much data, our test-set  might just be 
lucky or unlucky

We say the  
“test-set  
estimator of  
performance  
has high  
variance”



LOOCV (Leave-one-out Cross Validation)
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• For k=1 to R

1. Let (xk,yk) be the kth record

x

y



LOOCV (Leave-one-out Cross Validation)
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• For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk) from the 
dataset

x

y



LOOCV (Leave-one-out Cross Validation)
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• For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk) from the 
dataset

3. Train on the remaining R-1  
datapoints

x

y



LOOCV (Leave-one-out Cross Validation)
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• For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk) from the 
dataset

3. Train on the remaining R-1  
datapoints

4. Note your error (xk,yk)

• When you’ve done all points,  report 
the mean error.

x

y



LOOCV (Leave-one-out Cross Validation)
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For k=1 to R

1. Let (xk,yk) be  the kth record

2. Temporarily
remove  (xk,yk) from  the
dataset

3. Train on the
remaining  R-1
datapoints

4. Note your
error (xk,yk)

When you’ve  done all points,  report 
the mean  error.

MSELOOCV
= 2.12



LOOCV (Leave-one-out Cross Validation)
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For k=1 to R

1. Let (xk,yk) be  the kth record

2. Temporarily
remove  (xk,yk) from  the
dataset

3. Train on the
remaining  R-1
datapoints

4. Note your
error (xk,yk)

When you’ve  done all points,  report 
the mean  error.

MSELOOCV
= 0.962



LOOCV (Leave-one-out Cross Validation)
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For k=1 to R

1. Let (xk,yk) be  the kth record

2. Temporarily
remove  (xk,yk) from  the
dataset

3. Train on the
remaining  R-1
datapoints

4. Note your
error (xk,yk)

When you’ve  done all points,  report 
the mean  error.

MSELOOCV
= 3.33



What kind of cross validation?
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Downside Upside
Test-set Variance: unreliable  

estimate of future  
performance

Cheap

Leave-
one-out

Expensive.
Has some weird  
behavior

Doesn’t  
waste data

..can we get the best of both worlds?



K-fold Cross Validation
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Randomly break the dataset into k  partitions (in 
our example we’ll have k=3  partitions colored 
Red Green and Blue)

x

y



K-fold Cross Validation
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Randomly break the dataset into k  partitions (in 
our example we’ll have k=3  partitions colored 
Red Green and Blue)

For the red partition: Train on all the  points not 
in the red partition. Find  the test-set sum of 
errors on the red  points.

x

y



K-fold Cross Validation
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Randomly break the dataset into k  partitions (in 
our example we’ll have k=3  partitions colored 
Red Green and Blue)

For the red partition: Train on all the  points not 
in the red partition. Find  the test-set sum of 
errors on the red  points.

For the green partition: Train on all the  points 
not in the green partition.
Find the test-set sum of errors on  the 
green points.x

y



K-fold Cross Validation
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Randomly break the dataset into k  partitions (in 
our example we’ll have k=3  partitions colored 
Red Green and Blue)

For the red partition: Train on all the  points not 
in the red partition. Find  the test-set sum of 
errors on the red  points.

For the green partition: Train on all the  points 
not in the green partition.
Find the test-set sum of errors on  the 
green points.

For the blue partition: Train on all the
points not in the blue partition. Find  the 
test-set sum of errors on the  blue points.

Then report the mean error

x

y

Linear Regression
MSE3FOLD=2.05



K-fold Cross Validation
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Randomly break the dataset into k  partitions (in 
our example we’ll have k=3  partitions colored 
Red Green and Blue)

For the red partition: Train on all the  points not 
in the red partition. Find  the test-set sum of 
errors on the red  points.

For the green partition: Train on all the  points 
not in the green partition.
Find the test-set sum of errors on  the 
green points.

For the blue partition: Train on all the
points not in the blue partition. Find  the 
test-set sum of errors on the  blue points.

Then report the mean error

x

y

Quadratic Regression
MSE3FOLD=1.11



K-fold Cross Validation
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Randomly break the dataset into k  partitions (in 
our example we’ll have k=3  partitions colored 
Red Green and Blue)

For the red partition: Train on all the  points not 
in the red partition. Find  the test-set sum of 
errors on the red  points.

For the green partition: Train on all the  points 
not in the green partition.
Find the test-set sum of errors on  the 
green points.

For the blue partition: Train on all the
points not in the blue partition. Find  the 
test-set sum of errors on the  blue points.

Then report the mean error

x

y

Joint-the-dots
MSE3FOLD=2.93



What kind of Cross Validation?
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Downside Upside
Test-set Variance: unreliable  

estimate of future  
performance

Cheap

Leave-
one-out

Expensive.
Has some weird behavior

Doesn’t waste data

10-fold Wastes 10% of the data.
10 times more expensive
than test set

Only wastes 10%. Only  10 
times more expensive  
instead of R times.

3-fold Wastier than 10-fold.  More 
Expensive than test set

Slightly better than test-
set

R-fold Identical to Leave-one-out



Perceptrons and Neural Nets
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Universal Machine Learning Diagram
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Things to 
be 

classified

Feature 
Vector 

Represent-
ation

Magic 
Classifier 

Box

Classification 
Decision

Naïve Bayes Classifiers
are one example

Today: 
Perceptron, 
SVM and Friends



Generative and Discriminative Models
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• Generative question: 
• “How can we model the joint distribution of the classes and the 

features?”
• Naïve Bayes, Markov Models, HMMs all generative

• Discriminative question: 
• “What features distinguish the classes from one another?”



Recap

Naïve Bayes: generative classifier
• Need to specify features ahead of time
• Parameters / weights directly estimated from corpus

• Logistic Regression: discriminative classifier
• Need to specify features ahead of time
• Parameters / weights learned iteratively
• Specified particular function (sigmoid) to convert z values into probabilities, handle non-

linear input

• Neural Networks:
• Glue together many classifiers
• Allow many different non-linear function transformations
• Learn both the features and weights iteratively
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Logistic Regression
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This is a real number, 
not a probability!



Sigmoid
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But without the sigmoid it’s just a linear 
function
• Regressing a line
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But without the sigmoid it’s just a linear 
function
• Classification:
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Generative vs. Discriminative: Visual Example
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Modeling what sort of bizarre distribution produced these 
training points is hard, but distinguishing the classes is a piece of 
cake! chart from MIT tech report #507, Tony Jebara



Linear Classification: Informal…

LING83800 -- S24 88

Find a (line, plane, hyperplane) 
that divides the red points from 
the blue points…. 



Hyperplane

• Just a subspace whose dimension is one less than that of its 
containing space.

• If the containing space is 3-dimensional, then its hyperplanes are 2-d
• If the containing space is 2-dimensional, then its hyperplanes are 1-d 

(lines)
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Linear Classification: Slightly more formal
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sign(y) tell us the class:
 + - blue
 -  - red
(Vectors normalized to length 1, and we assume 
that the hyperplane passes through 0,0)



Linear Classification: Slightly more formal
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sign(y) tell us the class:
 + - blue
 -  - red
(Vectors normalized to length 1, and we assume 
that the hyperplane passes through 0,0)



Perceptron
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Perceptron is an algorithm for binary classification  
that uses a linear prediction function:

f(x) =
1, w*x + b ≥ 0
-1, w*x + b < 0

This is a step function, which reads:
• the output is 1 if “w*x + b ≥ 0” is true, and the  

output is -1 if instead “w*x + b < 0” is true



Perceptron
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Perceptron is an algorithm for binary classification  
that uses a linear prediction function:

f(x) = 1, w*x + b ≥ 0
-1, w*x + b < 0

By convention, the two classes are +1 or -1.



Perceptron
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Perceptron is an algorithm for binary classification  
that uses a linear prediction function:

f(x) = 1, w*x + b ≥ 0
-1, w*x + b < 0

By convention, ties are broken in favor of the  
positive class.
• If “w*x + b” is exactly 0, output +1 instead of -1.



Perceptron

LING83800 -- S24 95

The w parameters are unknown. This is what we  
have to learn.

f(x) = 1, w*x + b ≥ 0
-1, w*x + b < 0

In the same way that linear regression learns the  
slope parameters to best fit the data points,  
perceptron learns the parameters to best separate  
the instances.



Perceptron: Learning the Weights
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The perceptron algorithm learns the weights by:
1. Initialize all weights w to 0
2. Iterate through the training data. For each  training 

instance, classify the instance.
a) If the prediction (the output of the classifier) was  correct, don’t do 

anything. (It means the classifier  is working, so leave it alone!)
b) If the prediction was wrong, modify the weights by  using the update

rule.
3. Repeat step 2 some number of times (more  on this later).



Perceptron: Learning the Weights
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What does an update rule do?

• If the classifier predicted an instance was  negative 
but it should have been positive…

Currently: w*xi + b < 0 
Want: w*xi+ b ≥0
• Adjust the weights w so that this function value  moves 

toward positive
• If the classifier predicted positive but it should  have been 

negative, shift the weights so that the  value moves toward
negative.



Perceptron: Learning the Weights
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The perceptron  
update rule:
wj += (yi – f(xi)) xij

Let’s assume xij is 1 in this example for now.

wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i



Perceptron: Learning the Weights
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wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i

The perceptron  
update rule:
wj += (yi – f(xi)) xij

This term is 0 if the prediction was correct (yi = f(xi)).
• Then the entire update rule is 0, so no change is made.



Perceptron: Learning the Weights
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wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i

The perceptron  
update rule:
wj += (yi – f(xi)) xij

If the prediction is wrong:
• This term is +2 if yi = +1 and f(xi) = -1.
• This term is -2 if yi = -1 and f(xi) = +1.
The sign of this term indicates the direction of the  
mistake.



Perceptron: Learning the Weights
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wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i

The perceptron  
update rule:
wj += (yi – f(xi)) xij

If the prediction is wrong:
• The (yi – f(xi)) term is +2 if yi = +1 and f(xi) = -1.

• This will increase wj (still assuming xij is 1)…
• …which will increase w*xi + b…
• …which will make it more likely w*xi + b ≥ 0 next time  (which is what we 

need for the classifier to be correct)LING83800 -- S24



Perceptron: Learning the Weights
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wj The weight of feature j
yi The true label of instancei
xi The feature vector of instancei
f(xi) The class prediction for instance i
xij The value of feature j ininstance i

The perceptron  
update rule:
wj += (yi – f(xi)) xij

If xij is 0, there will be no update.
• The feature does not affect the prediction for this instance,  

so it won’t affect the weight updates.
If xij is negative, the sign of the update flips.



Perceptron Update Example
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If       is supposed to be on 
the other side….

i iw w y x= +
  



Perceptron Learning Algorithm
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Linear Separability
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The training instances are linearly separable if  
there exists a hyperplane that will separate the  
two classes.



Linear Separability
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If the training instances are not linearly  
separable, the classifier will always get some  
predictions wrong.
• You need to implement some type of stopping criteria  

for when the algorithm will stop making updates, or it  
will run forever.

• Usually this is specified by running the algorithm for a  
maximum number of iterations or epochs.



Learning Rate
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Let’s make a modification to the update rule:  

wj += η (yi – f(xi)) xij

where η is called the learning rate or step size.
• When you update wj to be more positive or  

negative, this controls the size of the change you  
make (or, how large a “step” you take).
• If η=1 (a common value), then this is the same  

update rule from the earlier slide.



Learning Rate

•How to choose the step size?
• If η is too small, the algorithm will be slow  because the updates 

won’t make much progress.

• If η is too large, the algorithm will be slow  because the 
updates will “overshoot” and may  cause previously correct 
classifications to  become incorrect.
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Perceptrons
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Neural Networks
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Neural Networks
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Neural Networks
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Many complications
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Which non-linear
function to use?

Stochastic gradient descent is more 
complicated than the perceptron learning 
algorithm

What features to use? (Width)

How many hidden layers to use? (Depth)



Recap

Naïve Bayes: generative classifier
• Need to specify features ahead of time
• Parameters / weights directly estimated from corpus

• Logistic Regression: discriminative classifier
• Need to specify features ahead of time
• Parameters / weights learned iteratively
• Specified particular function (sigmoid) to convert z values into probabilities, handle non-

linear input

• Neural Networks:
• Glue together many perceptrons
• Allow many different non-linear function transformations
• Learn both the features and weights iteratively
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