Discriminative Classification

Expanded Edition

Perceptrons

LING83800: METHODS IN COMPUTATIONAL LINGUISTICS II
May 6, 2024
Spencer Caplan

Today

1. Logistic Regression
2. Cross-validation
3. Perceptrons and Neural Nets

Naïve Bayes Recap

- Bag of words (order independent)
- Feature are assumed independent given a class

$$
P\left(x_{1}, \ldots, x_{n} \mid c\right)=P\left(x_{1} \mid c\right) \ldots P\left(x_{n} \mid c\right)
$$

Q : Is this really true?

Problems with assuming conditional independence

- Correlated features \rightarrow double counting evidence
- Since parameters are estimated independently
- Example: Predicting test scores
- Previous test score
- Height
- Age
- Etc.
- This hurts classifier accuracy and calibration

Logistic Regression

- Doesn't assume features are independent
- Correlated features don't "double count"

Generative vs. Discriminative Models

Naive Bayes is a generative classifier
Logistic regression is a is a discriminiative classifier

Generative vs. Discriminative Models

Agenerative model uses the likelihood term, which expresses how to generate the features of a document if we knew it was of class c.

A discriminative model attempts to directly compute $\mathrm{P}(\mathrm{c} \mid \mathrm{d})$.

It may learn to assign a high weight to document features that directly improve its ability to discriminate between dasses

Unlike the generative model, good parameter estimates for a discriminative model don't help it generate an example of one of the classes.

Generative models (like HMMs or Naïve Bayes) make use of the likelihood term

$$
\hat{c}=\underset{c \in C}{\operatorname{argmax}} \overbrace{P(d \mid c)}^{\text {likelihood prior }} \overbrace{P(c)}^{\text {pr }}
$$

Discriminative models (like logistic regression) attempt to directly compute P(c|d)

Components of Classifiers

1. Feature representation of the input
2. Classification function
3. Objective function
4. Algorithm to optimize the objective function

Components of Classifiers

1. Feature representation of the input
2. Classification function

- Used to compute our estimate of $p(y \mid x)$
- For logistic regression this is the sigmoid

3. Objective function

- Used during learning to minimize error on the training example.
- For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function

- Here that's stochastic gradient descent

Sentiment Classifier

Input: "Spiraling away from narrative control as its first three episodes unreel, this series, about a post-apocalyptic future in which nearly everyone is blind, wastes the time of Jason Momoa and Alfre Woodard, among others, on a story that starts from a position of fun, giddy strangeness and drags itself forward at alugubrious pace."

Output: positive (1) or negative (0)

Sentiment Classifier

For sentiment classification, consider an input observation x, represented by a vector of features $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. The classifier output y can be 1 (positive sentiment) or 0 (negative sentiment). We want to estimate $P(y=1 \mid x)$

Logistic regression solves this task by learning, from a training set, a vector of weights and a bias term

$$
\begin{aligned}
& z=\sum_{i} w_{i} x_{i}+b \\
& \text { We can also write this as a dot product: } \\
& z=w \cdot x+b
\end{aligned}
$$

30 second linear algebra

$$
\begin{aligned}
& \operatorname{dot-product}(\vec{v}, \vec{w})=\vec{v} \cdot \vec{w}=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{N} w_{N} \\
& \quad \text { vector length }|\vec{v}|=\sqrt{\sum_{i=1}^{N} v_{i}^{2}}
\end{aligned}
$$

30 second linear algebra: Cosine similarity

$$
\operatorname{cosine}(\vec{v}, \vec{w})=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}}
$$

Cosine similarity

- -1: vectors point in opposite directions
- +1: vectors point in same directions
- 0: vectors are orthogonal

- Frequency is non-negative, so cosine range 0-1

Cosine similarity is just the difference in angle

Dot Product

$$
a \cdot b=\sum_{i=1}^{n} a_{i} b_{i}
$$

Sentiment Classifier

For sentiment classification, consider an input observation x, represented by a vector of features $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. The classifier output y can be 1 (positive sentiment) or 0 (negative sentiment). We want to estimate $P(y=1 \mid x)$

Logistic regression solves this task by learning, from a training set, a vector of weights and a bias term

But " z " here
$z=\sum_{i} w_{i} x_{i}+b$
We can also write this as a dot product:
$z=w \cdot x+b$

Sigmoid function

Probabilities in logistic regression

$$
P(y=1)=\sigma(w \cdot x+b)=\frac{1}{1+e^{-(w \cdot x+b)}}
$$

Decision boundary

Now we have a function that -- given an instance x-computes the probability $P(y=1 \mid x)$. How do we makea decision?

$$
\hat{y}=\left\{\begin{array}{c}
1 \text { if } P(y=1 \mid x)>0.5 \\
0 \text { otherwise }
\end{array}\right.
$$

For a test instance x, we say yes if the probability $P(y=1 \mid x)$ is more than .5 , and no otherwise. We call .5 the decision boundary

Components of Classifiers

1. Feature representation of the input

2. Classification function

- Used to compute our estimate of $p(y \mid x)$
- For logistic regression this is the sigmoid

3. Objective function

- Used during learning to minimize error on the training example.
- For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function

- Here that's stochastic gradient descent

Feature Templates

- Typically "feature templates" are used to generate many features at once
- For each word w :
- \$\{w\}_count
- \$\{w\}_islowercase
- \$\{w\}_with_NOT_before_count

Extracting Features

It's hokey. There are virtually no surprises, and the writing is second-rate . So why was it so enjoyable? For one thing, the cast is great. Anothernice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in, and it'll do the same to you .

Var	Definition	Value
x_{1}	Count of positive lexicon words	3
x_{2}	Count of negative lexicon words	
x_{3}	Does no appear? (binary feature)	
x_{4}	Number of 1 st and 2nd personpronouns	
x_{5}	Does ! appear? (binary feature)	
x_{6}	Log of the word count for the document	

Extracting Features

It'shokey, There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great . Another[nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in, and it'll do the same to you .

Var	Definition	Value
x_{1}	Count of positive lexicon words	3
x_{2}	Count of negative lexicon words	2
x_{3}	Does no appear? (binary feature)	
x_{4}	Number of 1st and 2nd personpronouns	
x_{5}	Does! appear? (binary feature)	
x_{6}	Log of the word count for the document	

Extracting Features

It'shokey, There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Anothernice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in, and it'll do the same to you .

Var	Definition	Value
x_{1}	Count of positive lexicon words	3
x_{2}	Count of negative lexicon words	2
x_{3}	Does no appear? (binary feature)	1
x_{4}	Number of 1st and 2nd personpronouns	
x_{5}	Does! appear? (binary feature)	
x_{6}	Log of the word count for the document	

Extracting Features

It'shokey, There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great . Another[nice touch is the music. (T was overcome with the urge to get off the couch and start dancing . It sucked me in, and it'll do the same to your.

Var	Definition	Value
x_{1}	Count of positive lexicon words	3
x_{2}	Count of negative lexicon words	2
x_{3}	Does no appear? (binary feature)	1
x_{4}	Number of 1st and 2nd personpronouns	3
x_{5}	Does! appear? (binary feature)	
x_{6}	Log of the word count for the document	

Extracting Features

It'shokey, There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another[nice touch is the music. (Twas overcome with the urge to get off the couch and start dancing . It suckedme in, and it'll do the same to you.

$$
\text { Word count }=64, \ln (64)=4.15
$$

Var	Definition	Value
x_{1}	Count of positive lexicon words	3
x_{2}	Count of negative lexicon words	2
x_{3}	Does no appear? (binary feature)	1
x_{4}	Number of 1st and 2nd personpronouns	3
x_{5}	Does! appear? (binary feature)	0
x_{6}	Log of the word count for thedocument	4.15

Components of Classifiers

1. Feature representation of the input
2. Classification function

- Used to compute our estimate of $p(y \mid x)$
- For logistic regression this is the sigmoid

3. Objective function

- Used during learning to minimize error on the training example.
- For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function

- Here that's stochastic gradient descent

Computing Z

Var	Definition	Value	Weight	Product
x_{1}	Count of positive lexicon words	3	2.5	7.5
x_{2}	Count of negative lexicon words	2	-5.0	-10
x_{3}	Does no appear? (binary feature)	1	-1.2	-1.2
x_{4}	Num 1st and 2nd person pronouns	3	0.5	1.5
x_{5}	Does! appear? (binary feature)	0	2.0	0
x_{6}	Log of the word count for thedoc	4.15	0.7	2.905
b	bias	1	0.1	.1

$$
z=\sum_{i} w_{i} x_{i}+b
$$

$Z=0.805$

Sigmoid(Z)

Components of Classifiers

1. Feature representation of the input
2. Classification function

- Used to compute our estimate of $p(y \mid x)$
- For logistic regression this is the sigmoid

3. Objective function

- Used during learning to minimize error on the training example.
- For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function

- Here that's stochastic gradient descent

Learning in Logistic Regression

How do we get the weights of the model? We need to learn the parameters (weights + bias).

This requires 2 components:

1. An objective function or lossfunction that tells us the distance between the system output and thegold output. We will use crossentropyloss.
2. An algorithm for optimizing the objective function. We will use stochastic gradient descent to minimize the loss function.

Loss functions

We need to determine for some observation x how close the classifier output ($\hat{y}=\sigma(w \cdot x+b)$) is to the correct output (y, which is 0 or 1).

$$
L(\hat{y}, y)=\text { how much } \hat{y} \text { differs from the true } y
$$

One example is mean squared error

$$
L_{M S E}(\hat{y}, y)=\frac{1}{2}(\hat{y}-y)^{2}
$$

Loss functions for probabilistic classification

- We use a loss function that prefers the correct class labels of the training example to be morelikely.
- Conditional MLE: Choose parameters w, b that maximize the (log) probabilities of the true labels in the training data.
- The resulting loss function is the negative log likelihood loss, more commonly called the cross entropy loss.

Loss functions for probabilistic classification

For one observation x , let's maximize the probability of the correct label $p(y \mid x)$.

$$
p(y \mid x)=\hat{y}^{y}(1-\hat{y})^{1-y}
$$

If $\mathrm{y}=1$, then $\mathrm{p}(\mathrm{y} \mid \mathrm{x})=\hat{y}$.
If $y=0$, then $p(y \mid x)=1-\hat{y}$.

Loss functions for probabilistic classification

Change to logs (still maximizing)

$$
\log p(y \mid x)=\log \left[\hat{y}^{y}(1-\hat{y})^{1-y}\right]
$$

This tells us what log likelihood should be maximized. But for loss functions, we want to minimize things, so we'll flip the sign.

Cross-entropy loss

The result is cross-entropy loss:
$L_{C E}(\hat{y}, y)=-\log p(y \mid x)=-[y \log \hat{y}+(1-y) \log (1-\hat{y})]$

Finally, plug in the definition for $\widehat{\boldsymbol{y}}=\sigma(w \cdot x)+b$
$L_{C E}(\hat{y}, y)=-[y \log \sigma(w \cdot x+b)+(1-y) \log (1-\sigma(w \cdot x+b))]$

Cross-entropy loss: example

Why does minimizing this negative log probability do what we want? We want the lossto be smaller if the model's estimate is close to correct, and we want the lossto be bigger if it isconfused.

It'shokey, There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. (Twas overcome with the urge to get off the couch and start dancing . It sucked me in, and it'll do the same to yous.

$$
\begin{aligned}
& \mathrm{P}(\text { sentiment }=1 \mid \mathrm{It} \text { 's hokey...) })=0.69 . \quad \text { Let's say } \mathrm{y}=1 . \\
& \begin{aligned}
L_{C E}(\hat{y}, y) & =-[y \log \sigma(w \cdot x+b)+(1-y) \log (1-\sigma(w \cdot x+b))] \\
& =-[\log \sigma(w \cdot x+b)] \\
& =-\log (0.69)=\mathbf{0 . 3 7}
\end{aligned}
\end{aligned}
$$

Cross-entropy loss: example

Why does minimizing this negative log probability do what we want? We want the lossto be smaller if the model's estimate is close to correct, and we want the lossto be bigger if it isconfused.

It'shokey, There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. (Twas overcome with the urge to get off the couch and start dancing . It sucked me in, and it'll do the same to yous.

$$
\begin{array}{rlr}
\mathrm{P}(\text { sentiment }=1 \mid \text { It's hokey...) }=0.69 . & \text { Let's pretend } \mathrm{y}=0 . \\
\begin{array}{rlr}
L_{C E}(\hat{y}, y) & =-[y \log \sigma(w \cdot x+b)+(1-y) \log (1-\sigma(w \cdot x+b))] \\
& = & -[\log (1-\sigma(w \cdot x+b))] \\
& = & -\log (0.31)=\mathbf{1 . 1 7}
\end{array}
\end{array}
$$

Cross-entropy loss: example

Why does minimizing this negative log probability do what we want? We want the lossto be smaller if the model's estimate is close to correct, and we want the lossto be bigger if it isconfused.

> It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it soenjoyable? For one thing, the cast is great. Another nice touch is the music . Wwas overcome with the urge to get off the couch and start dancing . It suckedme in, and it'll do the same to you.

If our prediction is correct, then our CE loss is lower

$$
=-\log (0.69)=0.37
$$

If our prediction is incorrect, then our CE loss is higher
$-\log (0.31)=1.17$

Components of Classifiers

1. Feature representation of the input
2. Classification function

- Used to compute our estimate of $p(y \mid x)$
- For logistic regression this is the sigmoid

3. Objective function

- Used during learning to minimize error on the training example.
- For logistic regression this is cross-entropy loss

4. Algorithm to optimize the objective function

- Here that's stochastic gradient descent

NB vs. LR: Parameter Learning

- Naïve Bayes:
- Learn conditional probabilities independently by counting
- Logistic Regression:
- Learn weights jointly

Closed Form Solution

- a Closed Form Solution is a simple solution that works instantly without any loops, functions etc
- e.g. the sum of integer from 1 to n

Gradient descent

Iteratively find minimum

There are many other issues to consider with learning regression models like this

- But this is not a machine learning course!

Gradient Descent

Gradient Descent

Logistic Regression: Pros and Cons

- Doesn't assume conditional independence of features
- Better calibrated probabilities
- Can handle highly correlated or overlapping features
- But NB is faster to train, less likely to overfit

Cross-Validation

Cross-validation slides adapted from:
Andrew W. Moore Carnegie Mellon
www.cs.cmu.edu/~awm

A regression problem

$$
y=f(x)+\text { noise }
$$

Can we learn f from this data?

Let's consider three methods...

Liner Regression

$$
y^{\text {est }}=\beta_{0}+\beta_{1} x
$$

Quadratic Regression

$$
y^{e s t}=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

"Join-the-dots"

Also known as piecewise linear nonparametric regression if you want to feel fancy

Which is best?

Why not choose the method with the best fit to the data?

What do we really want?

Why not choose the method with the best fit to the data?
"How well are you going to predict future data drawn from the same distribution?"

The test set method

 of the data to be in a test set
2.The remainder is a training set

The test set method

1.Randomly choose 30\% of the data to be in a test set
2.The remainder is a training set
3.Perform your
regression on the training set
(Linear regression example)

The test set method

1.Randomly choose 30\% of the data to be in a test set
2.The remainder is a training set
3.Perform your
regression on the training set
(Linear regression example)
Mean Squared Error = 2.4
4.Estimate your future performance with the test set

The test set method

(Quadratic regression example) Mean Squared Error $=0.9$
1.Randomly choose 30% of the data to be in a test set
2.The remainder is a training set
3.Perform your
regression on the training set
4.Estimate your future performance with the test set

The test set method

(Join the dots example)
Mean Squared Error = 2.2
1.Randomly choose 30% of the data to be in a test set
2. The remainder is a training set
3.Perform your regression on the training set
4.Estimate your future performance with the test set

The test set method

Good news:

- Very very simple
- Can then simply choose the method with the best test-set score

Bad news:

- What's the downside?

The test set method

Good news:

- Very very simple
- Can then simply choose the method with the best test-set score

Bad news:

- Wastes data: we get an estimate of the best method to apply to 30\% less data
- If we don't have much data, our test-set might just be lucky or unlucky

We say the "test-set estimator of performance has high variance"

LOOCV (Leave-one-out Cross Validation)

- For $k=1$ to R

1. Let $\left(x_{k}, y_{k}\right)$ be the $k^{\text {th }}$ record

LOOCV (Leave-one-out Cross Validation)

- For $k=1$ to R

1. Let $\left(x_{k}, y_{k}\right)$ be the $k^{\text {th }}$ record
2. Temporarily remove $\left(x_{k}, y_{k}\right)$ from the dataset

LOOCV (Leave-one-out Cross Validation)

- For $k=1$ to R

1. Let $\left(x_{k}, y_{k}\right)$ be the $k^{\text {th }}$ record
2. Temporarily remove $\left(x_{k}, y_{k}\right)$ from the dataset
3. Train on the remaining R-1 datapoints

LOOCV (Leave-one-out Cross Validation)

- For $\mathrm{k}=1$ to R

1. Let $\left(x_{k}, y_{k}\right)$ be the $k^{\text {th }}$ record
2. Temporarily remove $\left(x_{k}, y_{k}\right)$ from the dataset
3. Train on the remaining R-1 datapoints
4. Note your error $\left(x_{k}, y_{k}\right)$

- When you've done all points, report the mean error.

LOOCV (Leave-one-out Cross Validation)

For $\mathrm{k}=1$ to R

1. Let $\left(x_{k}, y_{k}\right)$ be the $k^{\text {th }}$ record
2. Temporarily remove (x_{k}, y_{k}) from the dataset
3. Train on the remaining R -1 datapoints
4. Note your error $\left(x_{k}, y_{k}\right)$
When you've done all points, report the mean error.

$$
\begin{gathered}
M S E_{\text {LOOCV }} \\
=2.12
\end{gathered}
$$

LOOCV (Leave-one-out Cross Validation)

For $\mathrm{k}=1$ to R

1. Let $\left(x_{k}, y_{k}\right)$ be the $k^{\text {th }}$ record
2. Temporarily
remove $\left(x_{k}, y_{k}\right)$ from the dataset
3. Train on the remaining R -1 datapoints
4. Note your error $\left(x_{k}, y_{k}\right)$
When you've done all points, report the mean error.

$$
\begin{gathered}
M S E_{\text {LOOCV }} \\
=0.962
\end{gathered}
$$

LOOCV (Leave-one-out Cross Validation)

For $\mathrm{k}=1$ to R

1. Let $\left(x_{k}, y_{k}\right)$ be the $k^{\text {th }}$ record
2. Temporarily
remove (x_{k}, y_{k}) from the dataset
3. Train on the remaining R -1 datapoints
4. Note your error $\left(x_{k}, y_{k}\right)$

When you've done all points, report the mean error.

$$
\begin{gathered}
M S E_{\text {LOOCV }} \\
=3.33
\end{gathered}
$$

What kind of cross validation?

	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data

..can we get the best of both worlds?

K-fold Cross Validation

Randomly break the dataset into k partitions (in our example we'll have $k=3$ partitions colored Red Green and Blue)

K-fold Cross Validation

Randomly break the dataset into k partitions (in our example we'll have $k=3$ partitions colored Red Green and Blue)
For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

K-fold Cross Validation

Randomly break the dataset into k partitions (in our example we'll have $k=3$ partitions colored Red Green and Blue)
For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

K-fold Cross Validation

Linear Regression
$M S E_{3 F O L D}=2.05$

Randomly break the dataset into k partitions (in our example we'll have $k=3$ partitions colored Red Green and Blue)
For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

K-fold Cross Validation

Quadratic Regression
 $M S E_{3 F O L D}=1.11$

Randomly break the dataset into k partitions (in our example we'll have $k=3$ partitions colored Red Green and Blue)
For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition. Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

K-fold Cross Validation

Randomly break the dataset into k partitions (in our example we'll have $k=3$ partitions colored Red Green and Blue)
For the red partition: Train on all the points not in the red partition. Find the test-set sum of errors on the red points.

For the green partition: Train on all the points not in the green partition.
Find the test-set sum of errors on the green points.

For the blue partition: Train on all the points not in the blue partition. Find the test-set sum of errors on the blue points.

Then report the mean error

What kind of Cross Validation?

		Downside	Upside
	Test-set	Variance: unreliable estimate of future performance	Cheap
\downarrow	Leave-one-dut	Expensive. Has some weird behavior	Doesn't waste data
$\text { Lhb }_{\text {Haf }}$	10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10\%. Only 10 times more expensive instead of R times.
word?	3-fold	(Vastie) han 10-fold. More Expensive than test set	Slightly better than testset
	R-fold	Identical to Leave-one-out	

Perceptrons and Neural Nets

Universal Machine Learning Diagram

Generative and Discriminative Models

- Generative question:
- "How can we model the joint distribution of the classes and the features?"
- Naïve Bayes, Markov Models, HMMs all generative
- Discriminative question:
- "What features distinguish the classes from one another?"

Recap

Naïve Bayes: generative classifier

- Need to specify features ahead of time
- Parameters / weights directly estimated from corpus
- Logistic Regression: discriminative classifier
- Need to specify features ahead of time
- Parameters / weights learned iteratively
- Specified particular function (sigmoid) to convert z values into probabilities, handle nonlinear input
- Neural Networks:
- Glue together many classifiers
- Allow many different non-linear function transformations
- Learn both the features and weights iteratively

Logistic Regression

Logistic regression solves this task by learning, from a training set, a vector of weights and a bias term.

$$
z=\left(\sum_{i=1}^{n} w_{i} x_{i}\right)+b
$$

We can also write this as a dot product:

This is a real number, not a probability!

Sigmoid

But without the sigmoid it's just a linear function
 - Regressing a line
 $$
z=\left(\sum_{i=1}^{n} w_{i} x_{i}\right)+b
$$

But without the sigmoid it's just a linear function

- Classification:

Generative vs. Discriminative: Visual Example

Modeling what sort of bizarre distribution produced these training points is hard, but distinguishing the classes is a piece of cake! chart from MIT tech report \#507, Tony Jebara

Linear Classification: Informal...

Find a (line, plane, hyperplane) that divides the red points from the blue points....

Hyperplane

- Just a subspace whose dimension is one less than that of its containing space.
- If the containing space is 3-dimensional, then its hyperplanes are 2-d
- If the containing space is 2 -dimensional, then its hyperplanes are 1-d (lines)

Linear Classification: Slightly more formal

 Input encoded as feature vector \vec{x}
Model encoded as \vec{w}

Just return $y=\vec{w} \cdot \vec{x}$!
sign(y) tell us the class:

+ - blue
- red
(Vectors normalized to length 1, and we assume that the hyperplane passes through 0,0)

Linear Classification: Slightly more formal

 Input encoded as feature vector \vec{x}
Model encoded as \vec{w}

Just return $y=\vec{w} \cdot \vec{x}$!
$\operatorname{sign}(y)$ tell us the class:

+ - blue
- red
(Vectors normalized to length 1, and we assume that the hyperplane passes through 0,0)

Perceptron

Perceptron is an algorithm for binary classification that uses a linear prediction function:

$$
f(\mathbf{x})=\left\{\begin{aligned}
1, & \mathbf{w}^{*} \mathbf{x}+\mathrm{b} \geq 0 \\
-1, & \mathbf{w}^{*} \mathbf{x}+\mathrm{b}<0
\end{aligned}\right.
$$

This is a step function, which reads:

- the output is 1 if " $w^{*} x+b \geq 0$ " is true, and the output is -1 if instead " $w^{*} x+b<0$ " is true

Perceptron

Perceptron is an algorithm for binary classification that uses a linear prediction function:

$$
f(\mathbf{x})=\left\{\begin{aligned}
1, & \mathbf{w}^{*} \mathbf{x}+b \geq 0 \\
-1, & \mathbf{w}^{*} \mathbf{x}+b<0
\end{aligned}\right.
$$

By convention, the two classes are +1 or -1 .

Perceptron

Perceptron is an algorithm for binary classification that uses a linear prediction function:

$$
f(\mathbf{x})=\left\{\begin{aligned}
1, & \mathbf{w}^{*} \mathbf{x}+b \geq 0 \\
-1, & \mathbf{w}^{*} \mathbf{x}+b<0
\end{aligned}\right.
$$

By convention, ties are broken in favor of the positive class.

- If " $w^{*} \mathbf{x}+b$ " is exactly 0 , output +1 instead of -1 .

Perceptron

The w parameters are unknown. This is what we

$$
f(\mathbf{x})=\left\{\begin{aligned}
1, & \mathbf{w}^{*} x+b \geq 0 \\
-1, & \mathbf{w}^{*} \mathbf{x}+b<0
\end{aligned}\right.
$$

In the same way that linear regression learns the slope parameters to best fit the data points, perceptron learns the parameters to best separate the instances.

Perceptron: Learning the Weights

The perceptron algorithm learns the weights by:

1. Initialize all weights \mathbf{w} to 0
2. Iterate through the training data. For each training instance, classify the instance.
a) If the prediction (the output of the classifier) was correct, don't do anything. (It means the classifier is working, so leave it alone!)
b) If the prediction was wrong, modify the weights by using the update rule.
3. Repeat step 2 some number of times (more on this later).

Perceptron: Learning the Weights

What does an update rule do?

- If the classifier predicted an instance was negative but it should have been positive...
Currently: $\mathbf{w}^{*} \mathbf{x}_{\mathbf{i}}+\mathrm{b}<0$
Want: $\quad \mathbf{w}^{*} \mathbf{x}_{\mathbf{i}}+\mathrm{b} \geq 0$
- Adjust the weights w so that this function value moves toward positive
- If the classifier predicted positive but it should have been negative, shift the weights so that the value moves toward negative.

Perceptron: Learning the Weights

The perceptron update rule:
$w_{j}+=\left(y_{i}-f\left(x_{i}\right)\right) x_{i j}$

w_{j}	The weight of feature j
y_{i}	The true label of instance i
x_{i}	The feature vector of instance i
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$	The class prediction for instance i
x_{ij}	The value of feature j in instance i

Let's assume $x_{i j}$ is 1 in this example for now.

Perceptron: Learning the Weights

The perceptron update rule:
$w_{j}+=\left(y_{i}-f\left(x_{i}\right)\right) x_{i j}$

w_{j}	The weight of feature j
y_{i}	The true label of instance i
x_{i}	The feature vector of instance i
$f\left(x_{i}\right)$	The class prediction for instance i
$x_{i j}$	The value of feature j in instance i

This term is 0 if the prediction was correct ($y_{i}=f\left(x_{i}\right)$).

- Then the entire update rule is 0 , so no change is made.

Perceptron: Learning the Weights

The perceptron update rule:
$w_{j}+=\left(y_{i}-f\left(x_{i}\right)\right) x_{i j}$

w_{j}	The weight of feature j
y_{i}	The true label of instance i
x_{i}	The feature vector of instance i
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$	The class prediction for instance i
x_{ij}	The value of feature j in instance i

If the prediction is wrong:

- This term is +2 if $y_{i}=+1$ and $f\left(x_{i}\right)=-1$.
- This term is -2 if $y_{i}=-1$ and $f\left(x_{i}\right)=+1$.

The sign of this term indicates the direction of the mistake.

Perceptron: Learning the Weights

The perceptron update rule:
$w_{j}+=\left(y_{i}-f\left(x_{i}\right)\right) x_{i j}$

w_{j}	The weight of feature j
y_{i}	The true label of instance i
x_{i}	The feature vector of instance i
$f\left(x_{i}\right)$	The class prediction for instance i
$x_{i j}$	The value of feature j in instance i

If the prediction is wrong:

- The $\left(y_{i}-f\left(x_{i}\right)\right)$ term is +2 if $y_{i}=+1$ and $f\left(x_{i}\right)=-1$.
- This will increase w_{j} (still assuming $x_{i j}$ is 1)...
- ...which will increase $\mathbf{w}^{*} \mathbf{x}_{i}+\mathrm{b} . .$.
- ... which will make it more likely $\mathbf{w}^{*} \mathbf{x}_{i}+b \geq 0$ next time (which is what we need for the classifier to be correct) $)_{0-524}$

Perceptron: Learning the Weights

The perceptron update rule:
$w_{j}+=\left(y_{i}-f\left(x_{i}\right)\right) x_{i j}$

w_{j}	The weight of feature j
y_{i}	The true label of instance i
x_{i}	The feature vector of instance i
$f\left(x_{i}\right)$	The class prediction for instance i
$x_{i j}$	The value of feature j in instance i

If $x_{i j}$ is 0 , there will be no update.

- The feature does not affect the prediction for this instance, so it won't affect the weight updates.
If $x_{i j}$ is negative, the sign of the update flips.

Perceptron Update Example

Perceptron Learning Algorithm

Input: A list T of training examples $\left\langle\vec{x}_{0}, y_{0}\right\rangle \ldots\left\langle\vec{x}_{n}, y_{n}\right\rangle$ where $\forall i: y_{i} \in\{+1,-1\}$
Output: A classifying hyperplane \vec{w}
Randomly initialize \vec{w};
while model \vec{w} makes errors on the training data do
for $\left\langle\vec{x}_{i}, y_{i}\right\rangle$ in T do
Let $\hat{y}=\operatorname{sign}\left(\vec{w} \cdot \vec{x}_{i}\right)$;
if $\hat{y} \neq y_{i}$ then
$\vec{w}=\vec{w}+y_{i} \vec{x}_{i} ;$
end
end
end

Linear Separability

The training instances are linearly separable if there exists a hyperplane that will separate the two classes.

Linear Separability

If the training instances are not linearly separable, the classifier will always get some predictions wrong.

- You need to implement some type of stopping criteria for when the algorithm will stop making updates, or it will run forever.
- Usually this is specified by running the algorithm for a maximum number of iterations or epochs.

Learning Rate

Let's make a modification to the update rule:

$$
w_{j}+=\eta\left(y_{i}-f\left(x_{i}\right)\right) x_{i j}
$$

where η is called the learning rate or step size.

- When you update w_{j} to be more positive or negative, this controls the size of the change you make (or, how large a "step" you take).
- If $\eta=1$ (a common value), then this is the same update rule from the earlier slide.

Learning Rate

- How to choose the step size?
- If η is too small, the algorithm will be slow because the updates won't make much progress.
- If η is too large, the algorithm will be slow because the updates will "overshoot" and may cause previously correct classifications to become incorrect.

Perceptrons

A single neuron

Neural networks

The simplest neural network is called a perceptron. It is simply a linear model:

$$
\begin{gathered}
\mathrm{NN}_{\text {Perceptron }}(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{W}+\boldsymbol{b} \\
\boldsymbol{x} \in \mathbb{R}^{d_{\text {in }}}, \quad \boldsymbol{W} \in \mathbb{R}^{d_{i n} \times d_{\text {out }}}, \quad \boldsymbol{b} \in \mathbb{R}^{d_{\text {out }}}
\end{gathered}
$$

where W is the weight matrix $a n d b$ is a bias term.

Neural Networks

To go beyond linear function, we introduce a non-linear hidden layer. The result is called a Multi-Layer Perceptron with one hidden layer.

$$
\begin{gathered}
\operatorname{NN}_{\mathrm{MLP} 1}(\boldsymbol{x})=g\left(\boldsymbol{x} \boldsymbol{W}^{\mathbf{1}}+\boldsymbol{b}^{\mathbf{1}}\right) \boldsymbol{W}^{\mathbf{2}}+\boldsymbol{b}^{\mathbf{2}} \\
\boldsymbol{x} \in \mathbb{R}^{d_{i n}}, \quad \boldsymbol{W}^{\mathbf{1}} \in \mathbb{R}^{d_{i n} \times d_{1}}, \quad \boldsymbol{b}^{\mathbf{1}} \in \mathbb{R}^{d_{1}}, \quad \boldsymbol{W}^{\mathbf{2}} \in \mathbb{R}^{d_{1} \times d_{2}}, \quad \boldsymbol{b}^{\mathbf{2}} \in \mathbb{R}^{d_{2}}
\end{gathered}
$$

Here $\mathbf{W}^{\mathbf{1}}$ and $\mathbf{b}^{\mathbf{1}}$ are a matrix and a bias for the first linear transformation of the input \mathbf{x},
\mathbf{g} is a nonlinear function (also an activation function),
$\mathbf{W}^{\mathbf{2}}$ and $\mathbf{b}^{\mathbf{2}}$ are the matrix and bias term for a second linear transform.

Neural Networks

We can add additional linear transformations and nonlinearities, resulting with a MLP with two hidden layers:

Neural Networks

A Multi-Layer Perceptron with one hidden layer is a "universal approximator".

It can approximate a family of functions that includes all continuous functions on a closed and bounded subset of R^{n}

It can approximate any function mapping from any finite dimensional discrete space to another.

Many complications

Which non-linear function to use?

Stochastic gradient descent is more complicated than the perceptron learning algorithm

What features to use? (Width)
How many hidden layers to use? (Depth)

Recap

Naïve Bayes: generative classifier

- Need to specify features ahead of time
- Parameters / weights directly estimated from corpus
- Logistic Regression: discriminative classifier
- Need to specify features ahead of time
- Parameters / weights learned iteratively
- Specified particular function (sigmoid) to convert z values into probabilities, handle nonlinear input
- Neural Networks:
- Glue together many perceptrons
- Allow many different non-linear function transformations
- Learn both the features and weights iteratively

