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Lecture 9 — 04/01/24
Language Modeling (Part II)1

1 Introduction
In the strictest sense, languagemodels (or LMs) are technologies which assign probabilities to sentences or utterances (or occasionally,
words) by defining a discrete probability distribution over a finite set of words (or in the case of word models, characters).2

Two features of language make this task challenging. First, any corpus of sentences is constrained by the grammatical constraints
imposed by serialization, a richly-specified language-specific procedure, but also bymany other factors, including semantico-pragmatic
plausibility: I went for a walk but forgot my {phone, torso}... Second, linguistic wellformedness cannot be reduced to
empirical probability of utterance.3

While both points are often well-taken, it affected a schism between cognitive-science and engineering approaches to “modeling
language”, one which persists to this day. Modern engineering solutions: are heuristic in nature, make few affordances for cognitive
plausibility, and conflate ill-formed utterances with improbable utterances.

Furthermore, the productive nature of language and the sparse (i.e., highly-skewed) frequencies of words ensure that few sentences in
any given corpus will have ever occurred before. If you’ve taken class with me, you’ll no doubt have seen several sparse-data-problem
/ Zipfian distirbutions plots so I won’t repeat another here.

1.1 Applications
Language modeling is essential for automatic speech recognition (ASR). In ASR, the language model is used to select the most plausible
of a set of acoustically confusable transcriptions. More formally, here is the somewhat grandiosely named fundamental theorem of
speech recognition (Jelinek 1998:4f.). Given the observed acoustic sequenceA, the recognizer selects a transcript Ŵ according to

Ŵ = argmax
W

P(A | W) · P(W) (1)

where the P(W) term is referred to as the language model. Language modeling is applicable to many other tasks, including:

• (mobile) text entry engines (IMEs),
• assistive technologies such as T9 (Grover, King, & Kushler 1998)
• spelling correction (Mays, Damerau, & Mercer 1991)
• optical character recognition (OCR),
• machine translation (MT), and
• natural language generation.

1.2 A note on Software
There are an enormous number of software libraries for creating language models. OpenGrm-NGram4 (Roark et al. 2012) is a general-
purpose command-line library for creating language models and compiling them into OpenFst-compatible weighted finite-state trans-
ducers. One popular alternative is KenLM5 (Heafield 2011). In contrast, discriminative and neural language models are generally a
“roll-your-own” technology.

1This handout is adapted from Kyle Gorman. In turn, loosely based on Chen and Goodman 1998 and slides by Brian Roark.
2Though you will find researchers using technologies which they call “language models” if they rank strings in some way even when they don’t actually assign

probabilities to those strings. IMO this is just not accurate, but you’ll find an even looser usage of the term by which any next- or nearby-word prediction model may
sometimes be called a language models (e.g., Bender, Gebru, McMillan-Major, & Shmitchell 2021)

3Make sure you understand why not, or ask me!
4https://ngram.opengrm.org
5https://github.com/kpu/kenlm
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2 Formal preliminaries

2.1 Definitions
Let Ω be a set of symbols6. Many applications use a closed vocabulary of word-like tokens, whereas others use a character vocabulary
(e.g., the 95 printable ASCII characters). A language model P is a discrete probability distribution over strings in Ω∗.

2.2 Sentence probability
Recall that the joint probability of some sequence W = w1 . . .wn is given by the product of the conditional probabilities:

P(w1) · P(w2 | w1) · P(w3 | w1w2) . . . P(wn | w1 . . .wn−1). (2)

For example:

P(du hast mich gefragt) = P(du) ·
P(hast | du) ·
P(mich | du hast) ·
P(gefragt | du hast mich).

Given a tokenwi, we refer to the symbols preceding it, hi = w1 . . .wi−1, as that token’shistory. In practice, the inherent sparsity of the
data forces us to adopt a simplifying assumption that each symbol is conditioned on only the n preceding words, and is conditionally
independent of earlier words. For instance, the 1st-order Markov model—a bigram model—estimate is given by:

P̂(du hast mich gefragt) = P(du) ·
P(hast | du) ·
P(mich | hast) ·
P(gefragt | mich).

We refer to hw sequences as n-grams, and language models which adopt a Markov assumption as n-gram models:
• a unigram (zeroth order) model assumes symbols are independent of each other,
• a bigram (first order) model conditions each symbol on the preceding symbol,
• a trigram (second order) model conditions each symbol on the preceding two symbols,
• a 4-gram (third order) model conditions each symbol on the preceding three symbols,

and so on. Compared to the alternatives, n-gram models are:

• compact: only observed n-grams and their probabilities must be stored;
• scalable: their performance increases as the amount of available data increases;7

• efficient: they can be efficiently scored and searched using finite-state algorithms; and
• unreasonably effective: their performance is still hard to beat for many tasks.

3 N-gram language models

3.1 Maximum likelihood estimation
Given a corpus of strings w1 . . .wn ⊆ Ω∗, let C ⊆ Ω∗ × N be a function which gives the frequency of specific n-grams. According to
the method of maximum likelihood, the conditional probability of seeing a word w with history h is

6other sources may just call this V, presumably for “Vocabulary”. In either case, we prefer either Ω or V here rather than Σ to avoid confusion with the summation
symbol.

7And, most types of language models can be estimated in a data-parallel fashion (Allauzen, Riley, & Roark 2016).

Page 2—LING83800



Spring 2024 Language Modeling Caplan

P̂(w | h) = C(hw)
C(h)

. (3)

3.1.1 Bigram example

Given a corpus consisting of the following three sentences (shown with padding tokens written explicitly):

<s> I am Sam </s>
<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

Then we could use eq. 3 to derive the following counts as follows:

P̂(I | <s>) = 2
3
= 0.67

P̂(Sam | <s>) = 1
3
= 0.33

P̂(am | I) = 2
3
= 0.67

P̂(</s> | Sam) =
1
2
= 0.5

P̂(Sam | am) =
1
2
= 0.5

P̂(do | I) = 1
3
= 0.33

...

However, due to the inherent sparsity of the data, we expect to encounter unattested n-grams, i.e., n-grams hw such that C(hw) = 0,
even when adopting a Markov assumption. Thus the maximum likelihood estimate will assign zero probability to sentences which
contain unattested n-grams!

3.2 Smoothing
To avoid this problem, we attempt to reserve some probability mass for unseen n-grams, a technique known as smoothing. All
smoothing techniques have a “Robin Hood” or “redistributive” characteristic: some probability mass is taken from attested n-grams
(“the rich”) and given to less frequent n-grams (“the poor”).8

3.2.1 Laplace smoothing

One of the simplest forms of smoothing is Laplace (or add-α) smoothing. We simply add some small positive “pseudocount” α ∈ R+

to each n-gram count, including unattested but logically possible n-grams, then modify the denominator to reflect the pseudocounts
so as to ensure proper normalization:

P̂(w | h) = C(hw) + α
C(h) + α|V| . (4)

In practice, Laplace smoothing is not a very effective smoothing technique. Modern smoothing methods can be conceptualized in
terms of either backoff or interpolation strategies.

8In the terminology of machine learning, zero probabilities assigned to sequences with unattested n-grams can be thought of as a type of overfitting, and smoothing
can be thought of as a special case of regularization.
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3.2.2 Backoff

In backoff smoothing strategies, we derive the estimate for unattested n-grams using the next lowest-order model. Given an n-gram
hw, let us define the backoff history, h′, such that h = w′h′. For instance, for the trigram du hast mich, h = du hast and
h′ = hast. Thus the history for a trigram is itself a bigram, and its backoff history is a unigram. Thus:

P̂(w | h) =
{
P̃(w | h) if C(hw) > 0

αhP̂(w | h′) otherwise
. (5)

The term αh, the discount, must be defined so as to ensure proper normalization.

3.2.3 Interpolation

Interpolation conceives of smoothing not as a disjunction between attested and unattested n-gram probabilities, but rather as a
mixture—a weighted sum—of lower- and higher-order estimates:

P̂(w | h) = λhP̃(w | h) + (1− λh)P̂(w | h′). (6)

Note that 1− λh corresponds loosely to the discount αh in (5).

Most smoothing techniques can be interpreted either as some kind of backoff or interpolation, though some people find one more
intuitive than the other. I was originally taught that interpolation performs better, though I never saw this claim rigorously tested and
backoff may be more commonly used when language models are implemented as weighted finite-state transducers.

4 Evaluation
Since we’re building engineering tools and there is often not a “ground truth” of the correct language model we should generally
perform extrinsic evaluation when possible. i.e. comparing different language model implementations using some model-external
measure in a downstream task. For instance, if we are developing language models for automatic speech recognition, we can measure
word error rate (i.e., roughly the number of errors in the best transcription).

Frequently though, this is not possible and language models are often evaluated using an intrinsic metric called perplexity (Jelinek,
Mercer, Bahl, & Baker 1977), closely related to Shannon (1948) entropy. Given a languagemodel P and a held-out corpusw1 . . .wn ⊆ V∗,
the probability of the corpus is given by:

P(w1 . . .wn) =
N

∏
i=1

P(wi | hi) (7)

Perplexity is simply this quantity exponentiated to −1/n:

PPXP(w1 . . .wn) = P(w1 . . .wn)
− 1

n (8)

Perplexity is the inverse probability of the test set, normalized by the number of words. You may see this “simplified” by expanding
the formula, first by flipping the negative exponent:

PPXP(w1 . . .wn) =
N

√
1

P(w1 . . .wn)
(9)

If we apply the chain rule for a bigram model then we get:
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PPXP(w1 . . .wn) =
N

√
N

∏
i=1

1
P(w1 | wi−1)

(10)

Intuitively, a lower perplexity indicates that the language model P assigns more probability mass to the corpus w1 . . .wn. Whenever
possible, however, we prefer to compare language models using model-extrinsic metrics derived from downstream tasks. For instance,
if we are developing language models for automatic speech recognition, we can measure word error rate (i.e., roughly the number of
errors in the best transcription).

5 Finite-state encoding
N-gram language models can be encoded as weighted finite-state acceptors (WFSAs), in which each transition and final state is
associated with a weight. While a finite-state representation of a language model is useful for many applications, it is essential in
building finite-state speech recognition systems, as discussed below.

5.1 Weighted FSTs
Finite-state acceptors and transducers can both be extended with numerical weights, including probabilities, so long as the algebraic
properties of those weights form a semiring.

5.1.1 Semirings

Before defining semirings, it is necessary to first introduce a related notion. Amonoid, is an ordered pair (K, •) where K is a set and
• is a binary operator over K with the properties of

1. closure: ∀a, b ∈ K : a • b ∈ K,
2. associativity: ∀a, b, c ∈ K : (a • b) • c = a • (b • c), and
3. identity: ∃e ∈ K : e • a = a • e = a.

A monoid is said to be commutative if, in addition, ∀a, b ∈ K : a • b = b • a. Then, a semiring is a five-tuple (K,⊕,⊗, 0̄, 1̄)
where

1. (K,⊕) form a commutative monoid with identity element 0̄,
2. (K,⊗) form a monoid with identity element 1̄,
3. ∀a, b, c ∈ K : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c), and
4. ∀a ∈ K : a⊗ 0̄ = 0̄⊗ a = 0̄.

These constraints require that ⊕ is commutative, that 0̄ is the additive identity, that 1̄ is the multiplicative identity, that ⊗ distributes
over ⊕, and that 0̄ is the multiplicative annihilator (i.e., that any weight multiplied with 0̄ is 0̄).

Some common semirings are shown in Table 1. Note that the tropical and log semirings take advantage of underflow-avoiding prop-
erties of logarithms discussed last week.

K ⊕ ⊗ 0̄ 1̄

Boolean {0, 1} ∨ ∧ 0 1
Plus-times (“probability”) R+ + × 0 1
Max-times (“real”) R+ max × 0 1
Log R ∪ {±∞} ⊕log + +∞ 0
Tropical R ∪ {±∞} min + +∞ 0

Table 1: Some common semirings for finite-state applications; a⊕log b = −ln(e−a + e−b).
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Figure 1: Unigram language model topology

5.2 Weighted finite-state acceptors
Weighted finite-state acceptors are finite acceptors in which transitions—and final states—are associated with weights drawn from a
semiring K. A weighted finite-state acceptor (WFSA) is defined by a six-tuple consisting of

• a finite set of states Q,
• a start or initial state s ∈ Q,
• a semiring (K,⊕,⊗, 0̄, 1̄),
• a final weight function ω ⊆ Q× K,
• an alphabet Σ, and
• a transition relation δ ⊆ Q× (Σ ∪ {ε})× K × Q.

Each path is then associated with, in addition to a state sequence q1, q2, . . . , qn ∈ Qn and a string z = z1, z2, . . . , zn ∈ Σn, a weight
sequence k1, k2,×, kn ∈ Kn, and a complete path must end on a final state whose final weight (given by ω) is non-Ō. A WFSA is said
to accept a string z ∈ Σn with weight

(
n⊗

i=1
ki

)
⊗ ω[qn] = k1 ⊗ k2 ⊗ . . . ⊗ kn ⊗ ω[qn].

if there exists a complete path with string z and weight sequence k1, k2, . . . , kn.

Gorman and Sproat (2021:§1.6) provide a similar definition for finite-state transducers (WFSTs), finite transducers augmented with
transition and final weights.

5.3 Topology
WFSAs are commonly used to encode language models. Let us assume that Ω = {hello, bye} and that we are deriving counts from
the following corpus:

hello
bye
hello
bye bye

We also use Kneser-Ney smoothing with backoff, encoding weights using the tropical semiring. Figure 1, Figure 2, and Figure 3
illustrate the associated topologies. Note that in the bigram and trigram models, the state labeled 1 is the start state, and the state 0
represents a backoff to the unigram model.
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Figure 2: Bigram language model topology

Figure 3: Trigram language model topology
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A Additional smoothing techniques

A.1 Katz smoothing
Katz (1975) smoothing is based on the Good-Turing probability estimation technique, which is inspired by the following two intu-
itions:

• Uniformitarianism: All n-grams that have the same frequency should have the same probability.
• Leave-one-out estimation: The expected frequency of an n-gram with frequency nr is roughly that of the observed frequency
of n-grams with frequency nr+1.

Definition Let nr be the number of types that occur r times in the sample. Thus, (r+ 1)nr+1 is the total count of all words which
occur r+ 1 times. To obtain the probability estimate, we simply divide by the number of words N and by nr, the number of words of
frequency r:

P̃(w) =
r+ 1
N

nr+1

nr
where r = C(w). (11)

Usually only infrequent n-grams are so smoothed (and the normalization corrected to reflect).

Usage Katz smoothing is still widely used used for high-order large-vocabulary models in speech recognition.
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A.2 Jelinek-Mercer smoothing
Definition In Jelinek-Mercer smoothing (Jelinek, Bahl, & Mercer 1983), the interpolation coefficient λh is determined empirically—
using maximum likelihood estimation or expectation maximization—on a held-out development set.

Usage This form of smoothing is not widely used for language modeling anymore, but it is sometimes employed to estimate the
P(T) term in part of speech taggers (e.g., Brants 2000).

A.3 Witten-Bell smoothing
In Witten-Bell smoothing (Bell, Cleary, & Witten 1990), λh is computed using statistical properties of h. The intuition here is that the
MLE estimate is of higher quality—i.e., closer to the true probability—and requires less smoothing when its history:

• is more frequent, or
• has few unique continuations.

For instance, if Rolls is a common history, or if it is followed by few words other than Royce, the estimate P̂(Royce | Rolls) is given
more weight than the backoff probability P̃(Royce).

Definition Let |hw∗| be the number of unique words w ∈ V for which C(hw) > 0. Then

λh =
C(h)

C(h) + κ|hw∗|
(12)

where κ is a hyperparameter (though usually κ = 1).

Usage Witten-Bell smoothing is generally thought to be the best choice for high-order character language models (e.g., Carpenter
2005), but is rarely used for large-vocabulary models.

A.4 Kneser-Ney smoothing
In Witten-Bell smoothing, the degree of smoothing is conditioned in part by the “promiscuity” of the history h. In Kneser-Ney
smoothing (Ney, Essen, &Kneser 1994), however, the smoothed estimate is instead conditioned by the “promiscuity” of the continuation
w. For instance, if Royce is preceded by few words other than Rolls, the MLE estimate is given more weight.

Definition Givenw and a backoff history h′, let |w∗h′wi| be the number of unique histories of the form h = w′h′ for which C(h) > 0.
Then:

P̃(w | h) = λhP̂(w | h) + (1− λh)P̃(w | h′) where P̃(w | h′) ∝ |w∗h′w|. (13)

Usually, only lower-order distributions are so smoothed.

Usage Variants of Kneser-Ney smoothing are generally thought to be one of the best methods for medium- and large-vocabulary
models (e.g., Chen & Goodman 1998).
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