
Language Modeling (Part 1)

LING83800: METHODS IN COMPUTATIONAL LINGUISTICS II
March 25, 2024
Spencer Caplan



Administrative Updates

• No practicum this Friday
• Back to normal next week
• Lecture: Monday 4/1
• Practicum: Friday 4/5

• I’ll get HW5 back to you later this week
• HW6 to be released after that – not due until two weeks from today 

(4/8)

LING83800 -- S24 2



Today

• Question on Probability?
• Language Models
• Unigrams
• Smoothing
• Bigrams
• Evaluation

LING83800 -- S24 3



Overview from last class

• Random events and random variables
• Probability distribution

LING83800 -- S24 4



Overview from last class

• Random events and random variables
• Probability distribution
• MLE
• Joint, conditional, and marginal probabilities

LING83800 -- S24 5



Overview from last class

• Random events and random variables
• Probability distribution
• MLE
• Joint, conditional, and marginal probabilities
• Independence
• Expectation

LING83800 -- S24 6



Overview from last class

• Random events and random variables
• Probability distribution
• MLE
• Joint, conditional, and marginal probabilities
• Independence
• Expectation
• Chain rule
• Markov assumption

LING83800 -- S24 7



Which could it be?

Which is a more reasonable English sentence:

a) “I bought a rose”

b) “I bought arose”

LING83800 -- S24 8



Which could it be?

Which is a more reasonable English sentence:

a) “What did Peter eat ravioli and?”

b) “What did Peter eat ravioli with?”

LING83800 -- S24 9



Which could it be?

(Knowing that dog could be a verb, as in “Accusation of corruption have 
dogged the former president for years”)

a) “Dogs dogs dog dog dogs”
i.e. “Dogs_N (that other) dogs_N dog_V[bother] also dog_V[trouble] (other) dogs_N”

b) “Cats (that) dogs chase love fish”

 The second sentence has the same structure!
  “N (that) N V V S”

LING83800 -- S24 10



Which could it be?

a) “I bought a rose”
b) “I bought arose”

A full answer to this problem is hard

But we can hack a partial solution using a Language Model (LM)

LING83800 -- S24 11



Language Models and Probability

• Categorical (yes-or-no) vs. gradient (probabilistic) judgements

LMs take as input a sequence of linguistic units and return (an estimate of) 
the probability of that sequence

The probability of a sequence is a real number between 0 and 1
• High-probability sequences are more likely to occur than low-probability 

ones
• An LM could rank the sentences at the start of the class and answer our 

original question – among many other applications (spelling, MT, etc.)

LING83800 -- S24 12



Language can’t be reduced to probabilities…

a) I went for a walk but I forgot my phone.
b) ?I went for a walk but I forgot my torso.

This point dates all the way back to Noam Chomsky in LSLT (1955)
a) ? Colorless green ideas sleep furiously.
b) * Furiously sleep ideas green colorless.

LING83800 -- S24 13



Science and Engineering

Schism between cognitive-science and engineering approaches to 
modeling of human language

Modern engineering solutions…:
1. are heuristic in nature
2. make few (or weak) affordances for cognitive plausibility, and
3. conflate ill-formed and improbable utterances

Not to mention the sparse-data problem

LING83800 -- S24 14



Sparse Data 

LING83800 -- S24 15

rank

fr
eq
ue
nc
y

Few sentences in any given corpus 
will have ever occurred before



Another way to look at it: paradigm sparsity
A table of Spanish verb forms
• Common in the classroom; absent in the wild
• How many of these will a native speaker actually hear in their lifetime?

LING83800 -- S24 17



Another way to look at it: paradigm sparsity
A table of Spanish verb forms
• For Hablar, about 30% can be found in a few million words of speech
• The maximum attested (decir): around 70%
• Median: about 1 verb form….

LING83800 -- S24 18



Another way to look at it: paradigm sparsity
A table of Spanish verb forms
• For Hablar, about 30% can be found in a few million words of speech
• The maximum attested (decir): around 70%
• Median: about 1 verb form….

LING83800 -- S24 19



Another way to look at it: paradigm sparsity

LING83800 -- S24 20



Modeling documents with unigrams

LING83800 -- S24 21



Documents as sequences of words

• Consider language identification
• “Is this document written in French or English?”

• Assume, we have two corpora (sets of documents)
• One set we know is English, the other set we know is French

• Training data vs. Testing Data

LING83800 -- S24 22



Documents as sequences of words

• Break documents into smaller sequences and compare the pieces

If W = set of possible words, then:

Document of length “n” = 𝑤 = (𝑤!, … , 𝑤")

LING83800 -- S24 23



Documents as sequences of words

How to treat words like a finite set

*U* = “unknown word”

If 𝑊# is the set of words appearing in a corpus, then set of possible 
words is:

𝑊 =	𝑊# ∪ ”*U*”

LING83800 -- S24 24



LMs as models of possible documents

For a document of length “n” = 𝑤 = (𝑤!, … , 𝑤") then

A language model is just a probability distribution P(W)

But what is the “true” distribution over English documents W (does 
that even make sense?)

Assumption: training corpus of documents d contains a representative 
sample from P(W) and we can use that to estimate P(W)

LING83800 -- S24 25



Unigram language models

𝑃 𝑊 = 𝑃(𝑁),
$%!

&

𝑃(𝑊$)

Unigram language models include a strict independence assumption:
𝑃 𝑊$ = 𝑤 = 𝑃(𝑊' = 𝑤)

A generative model of document creation – we’ll talk about this more 
soon

LING83800 -- S24 26



Unigram language models

We	need	to	introduce	a	parameter	to	properly	model	the	likelihood	
of	each	word:	

𝑃 𝑊$ = 𝑤 = 𝜃(

𝑃 𝑊 = 𝑃(𝑁),
$%!

&

𝜃(

LING83800 -- S24 27



Maximum likelihood estimates of unigram 
parameters
How do we estimate the vector of parameters 𝜃 of a unigram language 
model from a corpus of documents d?

Probability	jargon:
• A “statistic” is a function of the data
• An “estimator” for a parameter is a function whose value is intended to approximate that parameter

For us, the maximum likelihood estimator (MLE) sets 𝜃(  to be:
F𝜃( =

𝑛((𝑑)
𝑛#(𝑑)

LING83800 -- S24 28



Maximum likelihood estimates of unigram 
parameters
• Suppose we have a corpus size 𝑛#(d) = 10) . Consider two words, 

‘the’ and ‘equilateral’ with counts 2* 10* and 2, respectively.

• Then their maximum likelihood estimates are 0.02 and 2* 10+) 

LING83800 -- S24 29



Maximum likelihood principle

“to estimate the value of a parameter 𝜃 from data x, select the 
value "𝜃 of 𝜃 that makes x as likely as possible”

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝐿, 𝜃 = 𝑃-(𝑋)

LING83800 -- S24 30



Maximum likelihood principle

“to estimate the value of a parameter 𝜃 from data x, select the 
value "𝜃 of 𝜃 that makes x as likely as possible”

𝐿. 𝜃 = ,
(∈0

𝜃(
"!(.)

LING83800 -- S24 31

Probability of the word type “w”

Number of times 
word “w” appears 
in the document d



Maximum likelihood principle

LING83800 -- S24 32



Sparse-data Problems

LING83800 -- S24 33



Sparse-data Problems

LING83800 -- S24 34

• Thinking about distinguishing English from French:
• What would happen if we implemented the current MLE but the test 

document included a word not in our training documents?



Sparse-data Problems

LING83800 -- S24 35

• Thinking about distinguishing English from French:
• What would happen if we implemented the current MLE but the test 

document included a word not in our training documents?

We defined our vocabulary to include *U*, but *U* doesn’t appear in 
our training data, so the maximum likelihood estimate assigns it zero 
probability)

The document gets assigned zero probability!



Sparse-data Problems

LING83800 -- S24 36

• Over-fitting
• Accurately modeling the training data but not generalizing to novel data

Solution: smoothing! “This dark art is why 
NLP is taught in the 
engineering school” 
– Jason Eisner (JHU)



Smoothing

LING83800 -- S24 37

Take from the frequent types and give to the infrequent types



Smoothing

LING83800 -- S24 38

There are many kinds of smoothing

We’ll talk about a bunch next week

But for now let’s start with the simplest: add-alpha



Smoothing: add-alpha

LING83800 -- S24 39

Add a positive number 𝛼(  to each word w’s empirical frequency

• Important that we readjust the denominator so the revised estimates 
of 𝜃 still sum to 1

X𝜃( =
𝑛( 𝑑 + 𝛼(
𝑛# 𝑑 + 𝛼#

(where 𝛼# = ∑(∈0 𝛼(  is the sum over all words of the pseudo-counts)



Smoothing: add-alpha (Laplace)

LING83800 -- S24 40

We “bin” words into equivalence classes and assign the same pseudo-
count to all words in the same group.

• If there’s only a single equivalence class then 𝛼	 = 𝛼(  which is used 
for all words, and we only need to estimate a single parameter for our 
held-out data.



Smoothing: add-alpha (Laplace)

LING83800 -- S24 41



Smoothing: add-alpha (Laplace)

LING83800 -- S24 42



Why is it called “Laplace” smoothing?

LING83800 -- S24 43

Pierre-Simon, Marquis de Laplace

https://en.wikipedia.org/wiki/Pierre-Simon_Laplace


Estimating smoothing parameters

LING83800 -- S24 44

• How would our current MLE apply here to our current training data 
d?

No good!
• The MLE will just set 𝛼 to zero



Estimating smoothing parameters

LING83800 -- S24 45

Split our data into three sets:

• Primary training corpus d
• Secondary held-out training corpus h (also called the “development 

set” or “dev-set”)
• Test corpus t

(80%, 10%, 10% is a standard train/dev/test split)



Estimating smoothing parameters

LING83800 -- S24 46



Estimating smoothing parameters

LING83800 -- S24 47

• We seek the value [𝛼 of 𝛼 that maximizes the likelihood 𝐿3  of the 
held-out corpus h

This just says that the likelihood of the held-out data is the product 
of the probability of each word token in the data



Estimating smoothing parameters

LING83800 -- S24 48

• The function has a single peak, so a line-search routine can solve this 
efficiently (e.g. Golden-section search)

https://en.wikipedia.org/wiki/Golden-section_search


A practical note on probabilities

• The probabilities we deal with in NLP are usually extremely small.
• This leads to underflow errors

• Solution: do everything in log space
• Avoids underflow
• (also adding is faster than multiplying)

log 𝑝! ∗ 𝑝4 ∗ 𝑝5 ∗ 𝑝6 = log 𝑝! + log 𝑝4 + log 𝑝5 + log 𝑝6

LING83800 -- S24 49



A practical note on probabilities

• The probabilities we deal with in NLP are usually extremely small.
• This leads to underflow errors

• Solution: do everything in log space
• Avoids underflow
• (also adding is faster than multiplying)

log 𝑝! ∗ 𝑝4 ∗ 𝑝5 ∗ 𝑝6 = log 𝑝! + log 𝑝4 + log 𝑝5 + log 𝑝6

LING83800 -- S24 50



Contextual Dependencies

LING83800 -- S24 51



Contextual dependencies

• BUT! Unigram language models assume that words are generated as 
independent entities.

Thus we still have no way of answering our original motivating 
question: How to rank (a) as better – more likely – than (b)?

a) “I bought a rose”
b) “I bought arose”

LING83800 -- S24 52



Contextual Dependencies

• Unigrams and the independence assumption

• Cannot capture contextual dependencies among words in the same 
sentence!

a) “students eat bananas”
b) “bananas eat students”

LING83800 -- S24 53



Contextual Dependencies

• Unigrams and the independence assumption

• Cannot capture contextual dependencies among words in the same 
sentence!

a) “students eat bananas”
b) “bananas eat students”

LING83800 -- S24 54

Unigram LMs assign equal 
probability to both



How to compute P(W)

LING83800 -- S24 55

• How to compute this joint probability:

• P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability



Chain Rule

LING83800 -- S24 56

• Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting:   P(A,B) = P(A)P(B|A)

• More variables:
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The Chain Rule in General
  P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)



The Chain Rule applies to compute joint 
probability of words in sentence

LING83800 -- S24 57

P(“its water is so transparent”) =
 P(its) × P(water|its) ×  P(is|its water) 
         ×  P(so|its water is) ×  P(transparent|its water is so)

  

€ 

P(w1w2…wn ) = P(wi |w1w2…wi−1)
i
∏



How to estimate these probabilities

LING83800 -- S24 58

• Could we just count and divide?

• No!  Too many possible sentences!
• We’ll never see enough data for estimating these

€ 

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)



Markov Assumption

LING83800 -- S24 59

Andrei Markov• Simplifying assumption:

•Or maybe

€ 

P(the | its water is so transparent that) ≈ P(the | that)

€ 

P(the | its water is so transparent that) ≈ P(the | transparent that)



Markov Assumption

LING83800 -- S24 60

• In other words, we approximate each component in 
the product

  

€ 

P(w1w2…wn ) ≈ P(wi |wi−k…wi−1)
i
∏

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)



Simplest case: Unigram model

LING83800 -- S24 61

fifth, an, of, futures, the, an, incorporated, a, 
a, the, inflation, most, dollars, quarter, in, is, 
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model
  

€ 

P(w1w2…wn ) ≈ P(wi)
i
∏



N-grams

• Slide a window of length n words over the text
• Overlapping sequences of length n that we see through this window 

are called n-grams

• N=2 (bigrams)
• N=3 (trigrams)
• N=4 (…. Just called 4-grams)

LING83800 -- S24 62



Bigram model

LING83800 -- S24 63

Condition on the previous word:

texaco, rose, one, in, this, issue, is, pursuing, growth, in, 
a, boiler, house, said, mr., gurria, mexico, 's, motion, 
control, proposal, without, permission, from, five, hundred, 
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)



N-gram models

LING83800 -- S24 64

• We can extend to trigrams, 4-grams, 5-grams
• In general this is an insufficient model of language
• because language has long-distance dependencies:

“The computer(s) which I had just put into the machine room on the fifth floor is (are) crashing.”

• But for engineering purposes we can often get away with N-gram models



Estimating N-gram Probabilities

LING83800 -- S24 65



Estimating bigram probabilities

LING83800 -- S24 66

• The Maximum Likelihood Estimate

€ 

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Just different 
notation for the 
“n” function on



Padding tokens

LING83800 -- S24 67

• Special tokens added to beginning / end of 
sentence to allow n-gram calculation



Bigram example

LING83800 -- S24 68

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

“Padding” tokens



Raw bigram counts

LING83800 -- S24 69

• Out of 9222 sentences



Raw bigram probabilities

LING83800 -- S24 70

• Normalize by unigrams:

• Result:



Bigram estimates of sentence probabilities

LING83800 -- S24 71

P(<s> I want english food </s>) =
 P(I|<s>)   
 ×  P(want|I)  
 ×  P(english|want)   
 ×  P(food|english)   
 ×  P(</s>|food)
       =  .000031



What kinds of knowledge

LING83800 -- S24 72

• P(english|want)  = .0011
• P(chinese|want) =  .0065
• P(to|want) = .66
• P(eat | to) = .28
• P(food | to) = 0
• P(want | spend) = 0
• P (i | <s>) = .25



Google Books N-grams

LING83800 -- S24 73

• serve as the incoming 92

• serve as the incubator 99

• serve as the independent 794

• serve as the index 223

• serve as the indication 72

• serve as the indicator 120

• serve as the indicators 45

• serve as the indispensable 111

• serve as the indispensible 40

• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html


Google Books N-grams

LING83800 -- S24 74

https://books.google.com/ngrams

https://books.google.com/ngrams


Google N-grams Samples

LING83800 -- S24 75



Google N-grams Samples

LING83800 -- S24 76



Google N-grams Samples

LING83800 -- S24 77



Google N-grams Samples

LING83800 -- S24 78



Google N-grams Samples

LING83800 -- S24 79



Google N-grams Samples

LING83800 -- S24 80



Evaluating Models

LING83800 -- S24 81



Evaluation: How good is our model?

LING83800 -- S24 82

• Does our language model prefer good sentences to bad ones?
• Assign higher probability to “real” or “frequently observed” 

sentences 
• Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.
• We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset that is different from our training 

set, totally unused.
• An evaluation metric tells us how well our model does on the test 

set.



Training on the test set

LING83800 -- S24 83

• We can’t allow test sentences into the training set

• We will assign it an artificially high probability when we set it in the 
test set

Which is bad science!



Extrinsic evaluation

LING83800 -- S24 84

• Best evaluation for comparing models A and B
• Put each model in a task
•  spelling corrector, speech recognizer, MT system

• Run the task, get an accuracy for A and for B
• How many misspelled words corrected properly
• How many words translated correctly

• Compare accuracy for A and B



Difficulty of extrinsic evaluation

LING83800 -- S24 85

• Extrinsic evaluation
• Time-consuming; can take days or weeks

• So
• Sometimes use intrinsic evaluation: perplexity
• Bad approximation 
• unless the test data looks just like the training data
• So generally only useful in pilot experiments

• But is helpful to think about.



Intuition of Perplexity

LING83800 -- S24 86

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game.  (Why?)

• A better model of a text
•  is one which assigns a higher probability to the word that actually occurs

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

naan 0.0001

….

and 1e-100

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____



Perplexity

LING83800 -- S24 87

Perplexity is the inverse probability of the test set, 
normalized by the number of words:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set
• Gives the highest P(sentence) PP(W ) = P(w1w2...wN )

−
1
N

           =
1

P(w1w2...wN )
N

By the chain rule:

For bigrams:



Example for random digits

LING83800 -- S24 88

• Let’s suppose a sentence consisting of random digits
• What is the perplexity of this sentence according to a model 

that assign P=1/10 to each digit?



Lower perplexity = higher probability = better 
model

LING83800 -- S24 89

• Training 38 million words, test 1.5 million words, WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109


