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Administrative Updates

• No practicum this Friday
• Back to normal next week
• Lecture: Monday 4/1
• Practicum: Friday 4/5

• I’ll get HW5 back to you later this week
• HW6 to be released after that – not due until two weeks from today 

(4/8)

LING83800 -- S24 2



Today

• Question on Probability?
• Language Models
• Unigrams
• Smoothing
• Bigrams
• Evaluation
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Overview from last class

• Random events and random variables
• Probability distribution
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Overview from last class

• Random events and random variables
• Probability distribution
• MLE
• Joint, conditional, and marginal probabilities
• Independence
• Expectation
• Chain rule
• Markov assumption
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Which could it be?

Which is a more reasonable English sentence:

a) “I bought a rose”

b) “I bought arose”
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Which could it be?

Which is a more reasonable English sentence:

a) “What did Peter eat ravioli and?”

b) “What did Peter eat ravioli with?”
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Which could it be?

(Knowing that dog could be a verb, as in “Accusation of corruption have 
dogged the former president for years”)

a) “Dogs dogs dog dog dogs”
i.e. “Dogs_N (that other) dogs_N dog_V[bother] also dog_V[trouble] (other) dogs_N”

b) “Cats (that) dogs chase love fish”

 The second sentence has the same structure!
  “N (that) N V V S”
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Which could it be?

a) “I bought a rose”
b) “I bought arose”

A full answer to this problem is hard

But we can hack a partial solution using a Language Model (LM)
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Language Models and Probability

• Categorical (yes-or-no) vs. gradient (probabilistic) judgements

LMs take as input a sequence of linguistic units and return (an estimate of) 
the probability of that sequence

The probability of a sequence is a real number between 0 and 1
• High-probability sequences are more likely to occur than low-probability 

ones
• An LM could rank the sentences at the start of the class and answer our 

original question – among many other applications (spelling, MT, etc.)
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Language can’t be reduced to probabilities…

a) I went for a walk but I forgot my phone.
b) ?I went for a walk but I forgot my torso.

This point dates all the way back to Noam Chomsky in LSLT (1955)
a) ? Colorless green ideas sleep furiously.
b) * Furiously sleep ideas green colorless.
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Science and Engineering

Schism between cognitive-science and engineering approaches to 
modeling of human language

Modern engineering solutions…:
1. are heuristic in nature
2. make few (or weak) affordances for cognitive plausibility, and
3. conflate ill-formed and improbable utterances

Not to mention the sparse-data problem
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Sparse Data 
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Another way to look at it: paradigm sparsity
A table of Spanish verb forms
• Common in the classroom; absent in the wild
• How many of these will a native speaker actually hear in their lifetime?
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Another way to look at it: paradigm sparsity
A table of Spanish verb forms
• For Hablar, about 30% can be found in a few million words of speech
• The maximum attested (decir): around 70%
• Median: about 1 verb form….
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Another way to look at it: paradigm sparsity
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Modeling documents with unigrams
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Documents as sequences of words

• Consider language identification
• “Is this document written in French or English?”

• Assume, we have two corpora (sets of documents)
• One set we know is English, the other set we know is French

• Training data vs. Testing Data
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Documents as sequences of words

• Break documents into smaller sequences and compare the pieces

If W = set of possible words, then:

Document of length “n” = 𝑤 = (𝑤!, … , 𝑤")
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Documents as sequences of words

How to treat words like a finite set

*U* = “unknown word”

If 𝑊# is the set of words appearing in a corpus, then set of possible 
words is:

𝑊 =	𝑊# ∪ ”*U*”
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LMs as models of possible documents

For a document of length “n” = 𝑤 = (𝑤!, … , 𝑤") then

A language model is just a probability distribution P(W)

But what is the “true” distribution over English documents W (does 
that even make sense?)

Assumption: training corpus of documents d contains a representative 
sample from P(W) and we can use that to estimate P(W)
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Unigram language models

𝑃 𝑊 = 𝑃(𝑁),
$%!

&

𝑃(𝑊$)

Unigram language models include a strict independence assumption:
𝑃 𝑊$ = 𝑤 = 𝑃(𝑊' = 𝑤)

A generative model of document creation – we’ll talk about this more 
soon
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Unigram language models

We	need	to	introduce	a	parameter	to	properly	model	the	likelihood	
of	each	word:	

𝑃 𝑊$ = 𝑤 = 𝜃(

𝑃 𝑊 = 𝑃(𝑁),
$%!

&

𝜃(
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Maximum likelihood estimates of unigram 
parameters
How do we estimate the vector of parameters 𝜃 of a unigram language 
model from a corpus of documents d?

Probability	jargon:
• A “statistic” is a function of the data
• An “estimator” for a parameter is a function whose value is intended to approximate that parameter

For us, the maximum likelihood estimator (MLE) sets 𝜃(  to be:
F𝜃( =

𝑛((𝑑)
𝑛#(𝑑)
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Maximum likelihood estimates of unigram 
parameters
• Suppose we have a corpus size 𝑛#(d) = 10) . Consider two words, 

‘the’ and ‘equilateral’ with counts 2* 10* and 2, respectively.

• Then their maximum likelihood estimates are 0.02 and 2* 10+) 
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Maximum likelihood principle

“to estimate the value of a parameter 𝜃 from data x, select the 
value "𝜃 of 𝜃 that makes x as likely as possible”

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝐿, 𝜃 = 𝑃-(𝑋)
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Maximum likelihood principle

“to estimate the value of a parameter 𝜃 from data x, select the 
value "𝜃 of 𝜃 that makes x as likely as possible”

𝐿. 𝜃 = ,
(∈0

𝜃(
"!(.)
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Probability of the word type “w”

Number of times 
word “w” appears 
in the document d



Maximum likelihood principle
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Sparse-data Problems
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Sparse-data Problems
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• Thinking about distinguishing English from French:
• What would happen if we implemented the current MLE but the test 

document included a word not in our training documents?



Sparse-data Problems
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• Thinking about distinguishing English from French:
• What would happen if we implemented the current MLE but the test 

document included a word not in our training documents?

We defined our vocabulary to include *U*, but *U* doesn’t appear in 
our training data, so the maximum likelihood estimate assigns it zero 
probability)

The document gets assigned zero probability!



Sparse-data Problems
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• Over-fitting
• Accurately modeling the training data but not generalizing to novel data

Solution: smoothing! “This dark art is why 
NLP is taught in the 
engineering school” 
– Jason Eisner (JHU)



Smoothing
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Take from the frequent types and give to the infrequent types



Smoothing
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There are many kinds of smoothing

We’ll talk about a bunch next week

But for now let’s start with the simplest: add-alpha



Smoothing: add-alpha
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Add a positive number 𝛼(  to each word w’s empirical frequency

• Important that we readjust the denominator so the revised estimates 
of 𝜃 still sum to 1

X𝜃( =
𝑛( 𝑑 + 𝛼(
𝑛# 𝑑 + 𝛼#

(where 𝛼# = ∑(∈0 𝛼(  is the sum over all words of the pseudo-counts)



Smoothing: add-alpha (Laplace)
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We “bin” words into equivalence classes and assign the same pseudo-
count to all words in the same group.

• If there’s only a single equivalence class then 𝛼	 = 𝛼(  which is used 
for all words, and we only need to estimate a single parameter for our 
held-out data.



Smoothing: add-alpha (Laplace)
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Smoothing: add-alpha (Laplace)
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Why is it called “Laplace” smoothing?
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Pierre-Simon, Marquis de Laplace

https://en.wikipedia.org/wiki/Pierre-Simon_Laplace


Estimating smoothing parameters
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• How would our current MLE apply here to our current training data 
d?

No good!
• The MLE will just set 𝛼 to zero



Estimating smoothing parameters
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Split our data into three sets:

• Primary training corpus d
• Secondary held-out training corpus h (also called the “development 

set” or “dev-set”)
• Test corpus t

(80%, 10%, 10% is a standard train/dev/test split)



Estimating smoothing parameters
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Estimating smoothing parameters
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• We seek the value [𝛼 of 𝛼 that maximizes the likelihood 𝐿3  of the 
held-out corpus h

This just says that the likelihood of the held-out data is the product 
of the probability of each word token in the data



Estimating smoothing parameters
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• The function has a single peak, so a line-search routine can solve this 
efficiently (e.g. Golden-section search)

https://en.wikipedia.org/wiki/Golden-section_search


A practical note on probabilities

• The probabilities we deal with in NLP are usually extremely small.
• This leads to underflow errors

• Solution: do everything in log space
• Avoids underflow
• (also adding is faster than multiplying)

log 𝑝! ∗ 𝑝4 ∗ 𝑝5 ∗ 𝑝6 = log 𝑝! + log 𝑝4 + log 𝑝5 + log 𝑝6
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Contextual Dependencies
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Contextual dependencies

• BUT! Unigram language models assume that words are generated as 
independent entities.

Thus we still have no way of answering our original motivating 
question: How to rank (a) as better – more likely – than (b)?

a) “I bought a rose”
b) “I bought arose”
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Contextual Dependencies

• Unigrams and the independence assumption

• Cannot capture contextual dependencies among words in the same 
sentence!

a) “students eat bananas”
b) “bananas eat students”
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Contextual Dependencies
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Unigram LMs assign equal 
probability to both



How to compute P(W)
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• How to compute this joint probability:

• P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability



Chain Rule
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• Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting:   P(A,B) = P(A)P(B|A)

• More variables:
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The Chain Rule in General
  P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)



The Chain Rule applies to compute joint 
probability of words in sentence
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P(“its water is so transparent”) =
 P(its) × P(water|its) ×  P(is|its water) 
         ×  P(so|its water is) ×  P(transparent|its water is so)

  

€ 

P(w1w2…wn ) = P(wi |w1w2…wi−1)
i
∏



How to estimate these probabilities
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• Could we just count and divide?

• No!  Too many possible sentences!
• We’ll never see enough data for estimating these

€ 

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)



Markov Assumption
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Andrei Markov• Simplifying assumption:

•Or maybe

€ 

P(the | its water is so transparent that) ≈ P(the | that)

€ 

P(the | its water is so transparent that) ≈ P(the | transparent that)



Markov Assumption
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• In other words, we approximate each component in 
the product

  

€ 

P(w1w2…wn ) ≈ P(wi |wi−k…wi−1)
i
∏

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)



Simplest case: Unigram model
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fifth, an, of, futures, the, an, incorporated, a, 
a, the, inflation, most, dollars, quarter, in, is, 
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model
  

€ 

P(w1w2…wn ) ≈ P(wi)
i
∏



N-grams

• Slide a window of length n words over the text
• Overlapping sequences of length n that we see through this window 

are called n-grams

• N=2 (bigrams)
• N=3 (trigrams)
• N=4 (…. Just called 4-grams)
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Bigram model
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Condition on the previous word:

texaco, rose, one, in, this, issue, is, pursuing, growth, in, 
a, boiler, house, said, mr., gurria, mexico, 's, motion, 
control, proposal, without, permission, from, five, hundred, 
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)



N-gram models

LING83800 -- S24 64

• We can extend to trigrams, 4-grams, 5-grams
• In general this is an insufficient model of language
• because language has long-distance dependencies:

“The computer(s) which I had just put into the machine room on the fifth floor is (are) crashing.”

• But for engineering purposes we can often get away with N-gram models



Estimating N-gram Probabilities
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Estimating bigram probabilities
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• The Maximum Likelihood Estimate

€ 

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Just different 
notation for the 
“n” function on



Padding tokens
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• Special tokens added to beginning / end of 
sentence to allow n-gram calculation



Bigram example
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<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

“Padding” tokens



Raw bigram counts
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• Out of 9222 sentences



Raw bigram probabilities
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• Normalize by unigrams:

• Result:



Bigram estimates of sentence probabilities
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P(<s> I want english food </s>) =
 P(I|<s>)   
 ×  P(want|I)  
 ×  P(english|want)   
 ×  P(food|english)   
 ×  P(</s>|food)
       =  .000031



What kinds of knowledge
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• P(english|want)  = .0011
• P(chinese|want) =  .0065
• P(to|want) = .66
• P(eat | to) = .28
• P(food | to) = 0
• P(want | spend) = 0
• P (i | <s>) = .25



Google Books N-grams
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• serve as the incoming 92

• serve as the incubator 99

• serve as the independent 794

• serve as the index 223

• serve as the indication 72

• serve as the indicator 120

• serve as the indicators 45

• serve as the indispensable 111

• serve as the indispensible 40

• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html


Google Books N-grams
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https://books.google.com/ngrams

https://books.google.com/ngrams


Google N-grams Samples
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Google N-grams Samples
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Google N-grams Samples
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Google N-grams Samples
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Google N-grams Samples
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Google N-grams Samples
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Evaluating Models
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Evaluation: How good is our model?
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• Does our language model prefer good sentences to bad ones?
• Assign higher probability to “real” or “frequently observed” 

sentences 
• Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.
• We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset that is different from our training 

set, totally unused.
• An evaluation metric tells us how well our model does on the test 

set.



Training on the test set
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• We can’t allow test sentences into the training set

• We will assign it an artificially high probability when we set it in the 
test set

Which is bad science!



Extrinsic evaluation
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• Best evaluation for comparing models A and B
• Put each model in a task
•  spelling corrector, speech recognizer, MT system

• Run the task, get an accuracy for A and for B
• How many misspelled words corrected properly
• How many words translated correctly

• Compare accuracy for A and B



Difficulty of extrinsic evaluation
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• Extrinsic evaluation
• Time-consuming; can take days or weeks

• So
• Sometimes use intrinsic evaluation: perplexity
• Bad approximation 
• unless the test data looks just like the training data
• So generally only useful in pilot experiments

• But is helpful to think about.



Intuition of Perplexity
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• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game.  (Why?)

• A better model of a text
•  is one which assigns a higher probability to the word that actually occurs

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

naan 0.0001

….

and 1e-100

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____



Perplexity
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Perplexity is the inverse probability of the test set, 
normalized by the number of words:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set
• Gives the highest P(sentence) PP(W ) = P(w1w2...wN )

−
1
N

           =
1

P(w1w2...wN )
N

By the chain rule:

For bigrams:



Example for random digits
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• Let’s suppose a sentence consisting of random digits
• What is the perplexity of this sentence according to a model 

that assign P=1/10 to each digit?



Lower perplexity = higher probability = better 
model
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• Training 38 million words, test 1.5 million words, WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109


