
Language Modeling (Part 2)

LING83800: METHODS IN COMPUTATIONAL LINGUISTICS II
April 1, 2024

Spencer Caplan

Generalization and overfitting

LING83800 -- S24 2

The Shannon Visualization Method

LING83800 -- S24 3

• Choose a random bigram

 (<s>, w) according to its probability

• Now choose a random bigram (w, x)
according to its probability

• And so on until we choose </s>
• Then string the words together

<s> I
 I want
 want to
 to eat
 eat peshwari
 peshwari naan
 naan </s>
I want to eat peshwari naan

Approximating Shakespeare

LING83800 -- S24 4

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-

Shakespeare as a corpus

LING83800 -- S24 5

• N=884,647 tokens, V=29,066
• Shakespeare produced 300,000 bigram types out of V2= 844

million possible bigrams.
• So 99.96% of the possible bigrams were never seen (have zero

entries in the table)

• 4-grams are worse: What's coming out looks like
Shakespeare because it is Shakespeare

The wall street journal is no Shakespeare
(sorry WSJ)

LING83800 -- S24 6

4.3 • GENERALIZATION AND ZEROS 11

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 4.4 Three sentences randomly generated from three N-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

lap whatsoever in possible sentences, and little if any overlap even in small phrases.
This stark difference tells us that statistical models are likely to be pretty useless as
predictors if the training sets and the test sets are as different as Shakespeare and
WSJ.

How should we deal with this problem when we build N-gram models? One way
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

Matching genres is still not sufficient. Our models may still be subject to the
problem of sparsity. For any N-gram that occurred a sufficient number of times,
we might have a good estimate of its probability. But because any corpus is limited,
some perfectly acceptable English word sequences are bound to be missing from it.
That is, we’ll have a many cases of putative “zero probability N-grams” that should
really have some non-zero probability. Consider the words that follow the bigram
denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things things that don’t ever occur in the training set but do occurzeros

in the test set—are a problem for two reasons. First, they means we are underes-
timating the probability of all sorts of words that might occur, which will hurt the
performance of any application we want to run on this data.

Second, if the probability of any word in the testset is 0, the entire probability of
the test set is 0. But the definition of perplexity is based on the inverse probability
of the test set. If some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!

The perils of overfitting

LING83800 -- S24 7

•N-grams only work well for word prediction if the test
corpus looks like the training corpus
• In real life, it often doesn’t
•We need to train robust models that generalize!
•One kind of generalization: Zeros!
• Things that don’t ever occur in the training set
• But occur in the test set

Zeros

LING83800 -- S24 8

• Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

• Test set
… denied the offer
… denied the loan

Zero probability bigrams

LING83800 -- S24 9

• Bigrams with zero probability
• mean that we will assign 0 probability to the test set!

• And hence we cannot compute perplexity (can’t divide by 0)!

Bigram illustration

LING83800 -- S24 10

Bigram formalism

LING83800 -- S24 11

Bigram formalism

LING83800 -- S24 12

Bigram formalism

LING83800 -- S24 13

Bigram smoothing

LING83800 -- S24 14

• We could smooth bigram Thetas like we did for unigrams
• Unigram smoothing parameter: 𝛼
• Bigram smoothing parameter: 𝛽

• However, aren’t we much more likely to see a high-frequency
word(w’) following w than a low frequency one?
• So we set a single constant 𝛽 to represent the likelihood of any unseen

bigram, but scale the estimate in our definition of theta to be proportional to
the unigram count

Add-alpha (beta) is a blunt tool

LING83800 -- S24 15

So depending on the application, there are better (more complicated) techniques

Sometimes it helps to use less context
Condition on less context for contexts you haven’t learned
much about

Backoff:
use trigram if you have good evidence,
otherwise bigram, otherwise unigram

Interpolation:
mix unigram, bigram, trigram according to some parameter λ

How to set the smoothing parameters?

LING83800 -- S24 16

• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:
• Fix the N-gram probabilities (on the training data)
• Then search for λs that give largest probability to held-out set:

Training Data Held-Out
Data

Test
Data

Kneser-Ney Smoothing

LING83800 -- S24 17

Kneser-Ney Intuition

LING83800 -- S24 18

• Better estimate for probabilities of lower-order unigrams!
• Shannon game: I can’t see without my reading______________?
• “Francisco” is more common than “glasses”
• … but “Francisco” always follows “San”

• The unigram is useful exactly when we haven’t seen this bigram!
• Instead of P(w): “How likely is w”
• Pcontinuation(w): “How likely is w to appear as a novel continuation?
• For each word, count the number of bigram types it completes
• Every bigram type was a novel continuation the first time it was seen

Francisco / glasses

Kneser-Ney Definition

LING83800 -- S24 19

!Θ!,!# =
𝑛!,!# 𝑑 + 𝛽𝑘!#
𝑛!,$ 𝑑 + 𝛽

𝑘!" =
number of word types that precede w’

number	of	words	types	that	precede	any	word

Still need to handle unseen unigrams!

Probabilistic Language Models

LING83800 -- S24 20

• Goal: compute the probability of a sentence or sequence of words:
 P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4)

• A model that computes either of these:
 P(W) or P(wn|w1,w2…wn-1) is called a language model.

• Better: the grammar But language model or LM is standard in Engineering

(And sometimes that’s exactly what we want)

LING83800 -- S24 21

•What does finite-state mean?

• Are the N-gram models we’ve talked about finite-state
machines?

• If so, about how many states did we have in them?

