Language Modeling (Part 2)

LING83800: METHODS IN COMPUTATIONAL LINGUISTICS Il
April 1, 2024
Spencer Caplan

Generalization and overfitting

LING83800 -- S24

The Shannon Visualization Method

<s> 1
Choose a random bigram T want
(<s>, w) according to its probability want to
Now choose a random bigram (w, x) to eat

according to its probability .
eat peshwari

And so on until we choose </s> ,
peshwarl naan

Then string the words together
naan

I want to eat peshwari naan

LING83800 -- S24

</s>

Approximating Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

Shakespeare as a corpus

 N=884,647 tokens, V=29,066
* Shakespeare produced 300,000 bigram types out of V?= 844

million possible bigrams.

* S0 99.96% of the possible bigrams were never seen (have zero
entries in the table)

* 4-grams are worse: What's coming out looks like
Shakespeare because it is Shakespeare

The wall street journal is no Shakespeare
(sorry WSJ)

1

gram

2

gram

3

gram

Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

The perils of overfitting

* N-grams only work well for word prediction if the test
corpus looks like the training corpus

* In real life, it often doesn’t
* We need to train robust models that generalize!
* One kind of generalization: Zeros!
* Things that don’t ever occur in the training set
* But occur in the test set

/eros

* Training set:

oo O

oo C
oo C
oo C

P(“offer” | denied the) =0

enied t
enied t
enied t
enied t

ne allegations
ne reports
ne claims

ne request

e Test set
... denied the offer
... denied the loan

Zero probability bigrams

* Bigrams with zero probability
* mean that we will assign O probability to the test set!

* And hence we cannot compute perplexity (can’t divide by 0)!

LING83800 -- S24

Bigram illustration

4 students eat bananas <«

Figure 1.1: The four bigrams extracted by a bigram language from the
sentence ‘students eat bananas’, padded with ‘<’ symbols at its beginning
and end.

LING83800 -- S24 10

Bigram formalism

In more detail, a bigram language model is defined as follows. If W =

(Wi, ..., W,) then

n+1
PW) = | PW:|Wiy) (1.9)
i=1

where

P(Wi=w' | W;_1=w) = Opw foralliinl,2,....,n+1

LING83800 -- S24

11

Bigram formalism

Example 1.9: A bigram model assigns the following probability to the string
‘students eat bananas’.

P(‘students eat bananas’) = O gtudents’ ©*students’ ‘eat’

@‘eat’,‘bana.nas’ e‘b.ema.nas’,q

LING83800 -- S24

12

Bigram formalism

Example 1.9: A bigram model assigns the following probability to the string
‘students eat bananas’.

P(‘students eat bananas’) = O gtudents’ ©*students’ ‘eat’

@‘eat’,‘bana.nas’ e‘b.ema.nas’,q

N w' ()
LT Sl

D)

LING83800 -- S24

13

Bigram smoothing

* We could smooth bigram Thetas like we did for unigrams
* Unigram smoothing parameter:
* Bigram smoothing parameter:

 However, aren’t we much more likely to see a high-frequency
word(w’) following w than a low frequency one?

* So we set a single constant 5 to represent the likelihood of any unseen
bigram, but scale the estimate in our definition of theta to be proportional to

the unigram count ~
i : w.aw' d ;_‘3 gw’
S, ., — v (d) +
’ nw.o(d) + B

Add-alpha (beta) is a blunt tool

So depending on the application, there are better (more complicated) techniques

Sometimes it helps to use less context
Condition on less context for contexts you haven’t learned
much about
Backoff:
use trigram if you have good evidence,
otherwise bigram, otherwise unigram
Interpolation:
mix unigram, bigram, trigram according to some parameter A

How to set the smoothing parameters?

Held-Out Test
Data Data

* Choose As to maximize the probability of held-out data:
* Fix the N-gram probabilities (on the training data)
* Then search for As that give largest probability to held-out set:

* Use a held-out corpus

LING83800 -- S24 16

Kneser-Ney Smoothing

LING83800 -- S24

17

Kneser-Ney Intuition

Better estimate for probabilities of lower-order unigrams!
* Shannon game: | can’t see without my reading "°"¢sc0/ glasses
* “Francisco” is more common than “glasses”
e ... but “Francisco” always follows “San”

The unigram is useful exactly when we haven’t seen this bigram!
Instead of P(w): “How likely is w”
Poontinuation(W): “How likely is w to appear as a novel continuation?
* For each word, count the number of bigram types it completes
* Every bigram type was a novel continuation the first time it was seen

Kneser-Ney Definition

0 _ Ny wr (d) + Bk,
e Nyo(d) + 0

number of word types that precede w’
ky, =
number of words types that precede any word

LING83800 -- S24

Still need to handle unseen unigrams!

Raw

ko (d) —+ «

ko(d) + a|W)

19

Probabilistic Language Models

* Goal: compute the probability of a sentence or sequence of words:

P(W) = P(W,W5,W3,W,,We...W,)

» Related task: probability of an upcoming word:
P(W5|W11W21W3/W4)

* A model that computes either of these:
P(W) or P(w,|wy,w,..w,,) is called a language model.

e Better: the grammar But language model or LM is standard in Engineering

(And sometimes that’s exactly what we want)

LING83800 -- S24

20

* What does finite-state mean?

* Are the N-gram models we’ve talked about finite-state
machines?

* If so, about how many states did we have in them?

