Classification
Regularization
Tuning

LING83800: METHODS IN COMPUTATIONAL LINGUISTICS Il
May 13, 2024
Spencer Caplan

Today

1. Features in classification
* Bag-of-words
* TF-iDF

2. Stemming / Lemmatization
3. Human learning for morphology
4. Tuning

* Regularization
* Hyperparameters

Text classification

* An enormous number of tasks in NLP can be framed as a simple
machine learning problem in which one assigns exactly one label
(from a finite set) to each document

* For instance...
* Genre classification
* Abuse detection
* Sentiment analysis
e Spam filtering
* Language ID

Discriminative classifiers (like logistic regression) are highly effective at
this task, and only recently have been surpassed by neural networks.

LING83800 -- S24

Words as features

* One of the fundamental issues in text classification is turning
documents into feature vectors

* Up to now we’ve sometimes assumed that features are binary-values
(thus a feature is either present or absent for a given document)

* For text classification problems, we could simply treat every unique
token as a indicator feature.

E.g., if the document contains the token Noriega, we have the feature tuple
("Noriega", True)

Bag of words

* We’ve also seen a feature representation where we keep track of how
often a word occurs in a document, which gives us integer-values
features

E.g., if the document contains the token Noriega three times, we have the
feature tuple ("Noriega", 3)

Since this ignores word order, it is sometimes called a bag of words
model

Bags of words in scikit-learn (1/2)

* Scikit-learn does not force us to extract and encode these word
features ourselves: rather, the process is largely automated by the
CountVectorizer class.

* This class, once instantiated, can be fed (via £it and transform
methods) sentences or documents or even lists of filenames, and can
perform various forms of preprocessing, including...

e Case-folding

e “accent stripping”

* Removal of “stop words”, and
* A crude form of tokenization

LING83800 -- S24

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

Bags of words in scikit-learn (2/2)

CountVectorizer can also generate higher-order n-gram features and
filter the feature vocabulary by

*min df=: document frequency (i.e., require that features occur in
at least k documents),

*max features=: an overall feature cutoff (i.e., limit itself to the k
most frequent features), or

e vocabulary=: simply use a pre-computed vocabulary of features.

LING83800 -- S24 7

Visualizing count vectors

LING83800 -- S24

Term-Document Matrix

| Each column vector
j, represem&s a Document

8

308 |8 |e Bk
4 8| |3 2|8

00000000000000

Term-Document Matrix

Each row vector
rapresem&s a Term

00000000000000

Term-Document Matrix

The value it a cell is

based on how often that term
occurred i khat documenk

abandon

abdicate

LING83800 -- S24

11

Term-Document Matrix

The length of the

G document vectors
is the s ze of the
vocabulary

=

LING83800 -- S24

12

Term-Document Matrix

abandon

abdicate

academic

g &

NN

Document vectors
can be sparse
(most values are ©)

LING83800 -- S24

13

Term-Document Matrix

1

abandon

abdicate

We can measure
how similar btwo
documenks are
bj ccwmparing Eheir
columin vectors

LING83800 -- S24

14

Term-Document Matrix

Each document is represented by a vector of words

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0) (1) 13)
good 14 80 62 89
fool 36 58 1 4
wit 0 15 3

LING83800 -- S24

15

Visualizing document vectors

40
Henry V [4,13]

O 15
S
S 1071/ Julius Caesar /1,7]

S 7 As You Like It /36,1] Twelfth Night /58,0/

%
S

— 1] | | | | | |

5 10 15 20 25 30 35 40 45 50 55 60

fool

LING83800 -- S24

16

Vectors for information retrieval

As You Like It Twelfth Night Julius Caesar Henry V
battle | 70) Ka 13)
good 14 80 62 89
fool 36 58 1 4
wit 0 15 3

i Right but how many dimensions did

we have again?

Wy
’c. ‘0
.. .
..
S
: 1y ¢

9

;

\ »
. .
. a i
\ A
’ :
. = .-
» .
.. :
™ ’ N

LING83800 -- S24

Problems with using raw frequency

Frequency is clearly useful!

But nearly all dimensions will have a value of O for any given document

And the highly frequent words like the, it, or they actually aren’t very
informative about the content (they’ll appear in nearly every
document)

Need a function that resolves this frequency “paradox”

Intuitions we’d like to capture

* Raw token refrequency is less informative than we’d like

1. Ubiquitous words tend to carry little information...

e ...e.g., they may be syntactically required functional elements rather than
semantically-rich lexical items themselves.

2. Words that occur in many documents/contexts tend to bear less
information than words which occur in few documents/contexts

* e.g., if a document mentions Noriega, it's probably about Noriega too.

Tf-idf: combing two factors

* tf: term frequency. frequency count (usually log-transformed):

Note from the
book:

You could also add
pseudo-count first
instead

if count(z,d) >0
otherwise

1 +log,ycount(t,d)
tft,d — O

LING83800 -- S24 22

Tt-idf: combing two factors

* tf: term frequency. frequency count (usually log-transformed):

o6 1 +1loggcount(t,d) if count(s,d) >0
400 otherwise

* |df: inverse document frequency: tf- Total # of docs in collection
, N
1dt; = log <—(

df;

N

of docs that have word i
tf-idf value for word t in document d:

Wt,d — tft,d X ldft

LING83800 -- S24

23

Tt-idf: combing two factors

* tf: term frequency. frequency count (usually log-transformed):

o 1 +1loggcount(t,d) if count(s,d) >0
400 otherwise

* |df: inverse document frequency: tf- Total # of docs in collection

What happens if a 1df; = log

word appears in
every document?

of docs that have word i
tf-idf value for word t in document d:

Wt,d — tfnd X ldft

LING83800 -- S24

24

Example (J&M, §6.3)

As You Like It

battle (id 1) T
good (id 2) 114
fool (id 3) 36
wit (id 4) 20

Sparse representation: {"As You Like It":

[(1,

1),

Twelfth Night

80
28
15

(2,

Julius Caesar

114),

(3,

36),

62

, 2001, ...

Henry V

13
89

25

Example (J&M’ §63) tfidf, , = tf, , X idf,

As You Like It Twelfth Night Julius Caesar Henry V
battle (id 1) .07 .00 22 .28
good (id 2) .00 .00 .00 .00
fool (id 3) .02 .02 .00 .01
wit (id 4) .05 .04 .02 .02

Sparse representation: {"As You Like It": [(1, 1), (2, 114), (3, 36), (4, 20)]1, ...}

TF-IDF weighting in scikit-learn

The TfidfVectorizer classis similar to the CountVectorizer,

but during the £it step, it computes DF statistics, and scales the TFs
during the transform step.

By default, it uses add-one smoothing for the DF counts but you can
disable this with smooth idf=False.

LING83800 -- S24 27

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

Stemming and lemmatization

LING83800 -- S24

28

Morphology and sparsity

* Much early work in computational linguistics treated every unique
word as an atomic element, ignoring the systematic, rule-governed
relationship between words like fish, fisher, and fishing.

* If we've never seen the word fisher (or only seen it a few times) in the
training set, we may have a poor ("high variance") representation of
features involving that word.

* Stemming and lemmatization are two technologies we use to
generalize across morphologically related words.

Lexicon compression

* Personal computers of the 1980s did not have enough memory to
store a reasonably comprehensive lexicon of English (or Japanese)
and engineers were forced to develop compression heuristics.

* This gets a lot worse quickly: English verbs may have as many as six
forms, but verbs in Archi have more than 1.5m unique forms (Kibrik
1998).

Log frequency

y-Axis are log frequencies, so
3R this 5 ~1000x more frequent

Xry than this

10
|
1

40 Inflection rank

50

0 500 1000 1500 2000

Lemma rank

Figure 1: Frequencies of CHILDES Spanish lemmas across inflection categories.

LING83800 -- S24

31

Lexicon compression

* Personal computers of the 1980s did not have enough memory to store a
reasonably comprehensive lexicon of English (or Japanese) and engineers
were forced to develop compression heuristics.

* This gets a lot worse quickly: English verbs may have as many as six forms,
but verbs in Archi have more than 1.5m unique forms (Kibrik 1998).

* Perhaps unsurprisingly, one of the most effective heuristics for compressing
a lexicon is to store a list of "stems" and rules to generate inflectional
variants.

* E.g., the MITalk TTS system (the voice behind Stephen Hawking) generates the word
scarcity from stem scarce by appending -ity and deleting a final e.

Stemmers

Generalizing this, Porter (1980) proposes a list of English affix-stripping
rules.

e E.g.: Do you really think it is weakness that yields to temptation? | tell you
that there are terrible temptations which it requires strength, strength
and courage, to yield to?

Stemmers

Generalizing this, Porter (1980) proposes a list of English affix-stripping rules.

* E.g.: Do you really think it is weak that yields-to temptatior? | tell you
that there are terrible temptat which it requires strength, strength
and courage, to yield to?

Crucially, the "stems" generated by the Porter stemmer (as this is known)
need not correspond to English words, or to the linguistic notion of the
stem; they just need to form useful, semantically coherent equivalence
classes (e.g., temptat- as a stem shared by temptation and temptations).

Lemmatizers

* Alemma is, roughly, the citation form or head word (the form you
look up in a dictionary) of a word.

* Lemmatizers attempt to map words onto their lemmas, which, in
contrast to the "stems" produced by stemmers, are guaranteed to be
pronounceable wordforms.

Software

o Snowball stemmers are available for roughly 20 languages via
nltk.stem.snowball.

e The WordNet lemmatizer, a knowledge-driven English lemmatizer, is
availablevianltk.stem.wordnet.

o Most of the 100 or so languages supported by Universal

Dependencies could be used to train a data-driven lemmatizer using
tools like Morfette or UDPipe.

LING83800 -- S24 36

https://snowballstem.org/
https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://universaldependencies.org/
https://universaldependencies.org/
https://sites.google.com/site/morfetteweb/home
https://ufal.mff.cuni.cz/udpipe

Ambiguity

* Neither stemmers nor knowledge-driven lemmatizers can fully resolve
ambiguity

For instance in Latvian, the wordform celu is ambiguous when considered in
isolation:

it could be an inflected variant for the verb celt (“to lift”)
or the nouns celis (“knee”) or ce/s (“road”)
Without context the lemmatizer can only guess

Data-driven lemmatizers frame the problem as a tagging task in which
the tags are edit scripts, a set of string rewrite instructions generating a
lemma from the inflected form (e.g., Chrupata 2008, 2014).

Practical / Engineering Tips

e To apply a stemmer or lemmatizer for text classification problems, one may
o replace all words with their stem/lemma before feature extraction, or

o extract word features, then augment them with additional features based on
stems/lemmas.

e You usually don't want to display stemmmed text to non-specialist end-users,
since they're not guaranteed to be words or even “word-like” units. One simple

solution is to keep track of the most frequent full words associated with each
stem and use those in place of the stems.

o« UDPipe 1, available from the command-line or Python, has great sentence
boundary detection, tokenization, and lemmatization in about 60 languages:

udpipe —--tokenize —--tag en.model 1nputdata > outputdata

https://ufal.mff.cuni.cz/udpipe/1

Survey of (mostly) English Morphology:
Inflection

stem eat catch cut
Morphological -s form eats | catches | cuts
forms of irregular : — : " _
verbs -ing principle eating | catching | cutting
Past form ate caught cut
—ed participle eaten | caught cut This is a WUG
stem walk merge try map
-s form walks merges | tries maps
-ing principle walking | merging | trying | mapping
Past form or —ed participle | walked | merged | tried mapped

— These regular verbs and forms are significant in the morphology of
English because of their majority and being{oroductive.)

LING83800 -- S24

Finite-State Morphological Parsing

We need at least the following to build a morphological parser:

1. Lexicon: the list of stems and affixes, together with basic information
about them (Noun stem or Verb stem, etc.)

2. Morphotactics: the model of morpheme ordering that explains which
classes of morphemes can follow other classes of morphemes inside a word.
E.g., the rule that English plural morpheme follows the noun rather than
preceding it.

3. Orthographic rules: these spelling rules are used to model the changes
that occur in a word, usually when two morphemes combine (e.g., the
y—~>ie spelling rule changes city + -s to cities).

Finite-State Morphological Parsing: Lexicon
and Morphotactics

irreg—past—verb—form

preterite (—ed)

pst participle (—ed)

prog (—ing)

reg—verb—stem

An FSA for English verbal inflection

irreg—verb—stem 3—sing (~s)

Reg-verb-stem Irreg-verb-stem Irreg-past-verb past Past-part | Pres-part | 3sg
walk cut caught -ed -ed -ing -
fry speak ate
talk sing eaten
impeach sang

spoken

LING83800 -- S24

41

DEPENDENCY

-

* Morphology is not associative: (a+ b) +c!=a+ (b + ¢)

* non+im+partial, non+il+legible, non+in+frequent
* not im+non+partial, il+non+legible, in+non+frequent

* boor+ish-ness, slav+ish-ness, baboon+ish-ness

* not boor+ish-ity, sla+ish-ity, baboon+ish-ity

* Generally, latinate (in-, -ity, -ic, -al, ...) suffixes must be used before
native ones (un-, non-, -ness, -ish, -hood)

Representation requires learning

* FSAs, FSTs, CFGs....

....They provide a way to represent and parse morphological structure,
but where does the capacity for those representations come from?

We need to actually acquire morphological rules from the input!

Big data not enough for a big problem

Corpus Tokens Infl. cat- Max. infl. Max. sat-
(millions) egories categories per uration
lemma

Brown Corpus 1.2 6 6 100.0
Wall Street Journal Corpus 1.3 6 6 100.0
Basque 0.6 22 16 72.7
Czech 2.0 72 41 56.9
Finnish 2.1 365 147 40.3
Greek 2.8 83 45 54.2
Hungarian 1.2 76 48 63.2
Hebrew 2.5 33 23 69.7
Slovene 2.4 32 24 75.0
Spanish 2.6 51 34 66.7
Swedish 1.0 21 14 66.7
Catalan 1.7 45 33 73.3
Italian 1.4 55 47 85.5
CHILDES Spanish 1.4 55 46 83.6
CHILDES Catalan 0.3 39 27 69.2

LII\A%83800 -- 524

CHILDES lItalian 0.3 31 63.3

Fighting your inner Ralph Wiggum

 Kids eventually learn productivity
categorically

* What can we learn about the path
that brings them there?

* |n particular, let’s look at a scheme
for evaluating rule productivity

e Rather than inducing where the
hypotheses come from

LING83800 -- S24

46

Some morphological errors in the wild

® The flatter (referring to the rolling pin; 2;7).

® She and Jenny took the sounder off with the needle (referring
to an LP record; 4,6).

® But you really call it the Darth Vader collection caser (referring
to a container; 4;2)

® It always sweats me. That sweater is a hot sweaty sweater
(referring to the causer of sweating; 4;3)

LING83800 -- S24 47

Words and Rules %!’

ag50ciations ™™

catch— ~~__ _— ™~ ___—caught
draW /__/—\/ drew

walk Add -d walked
(Regulars) (Regulars)

LING83800 -- S24 48

Optimizing an objective function (e.g. in NNs, for

VILE, etc) can only reduce the training error

{1 N) .)% |
) A “clean” function

9000

8000

7000

6000

5000

4000

3000

2000

1000

A trick function

random subset, y=10

0 b

y = x2except fora -

LING83800 -- S24

49

100

Optimizing an objective function (e.g. in NNs, for

VILE, etc) can only reduce the training error

English past tense

+H+ +

some are regular
a random set are irregular

ction

lbset y_1 0

pt fora

V bs
LING83800 -- S24

50

Rules and Exceptions

How to represent the following mapping:
(2,4), (3,4), (4,8), (5,10), (6,7), (7,8), (8,16)

* Could do it rote (memorize all the pairs)

* Could do it by rules:
e y=x+1:3,6, 7
e y=2Xx:2,4,5,8
* Either solution involves some kind of memorization of an arbitrary
list, but they differ in how that memorization occurs

LING83800 -- S24

51

Do we need to memorize anything?

* What if we had a bunch of rules in competition?

e catch, buy, think, , seek,
* hit, slit, split, quit, bid vs. sit, spit

Feels like this should there’d be a competition between these
“analogy” classes and the “add -ed” rule — then we won’t need to
memorize any words

 Just look at the pronunciation each time and decide

LING83800 -- S24

52

Do we need to memorize anything?

Several reasons why that’s not the case:
e Children do not over-irregularize (either naturally or in experiments)
* English has not gained a new irregular verb in the last 200 years

Feels like this should thg
“analogy” classes and
memorize any words

 Just look at the pronul®

LING83800 -- S24 53

Sub-parts of the wug test

I

This is a WUG

Now there is another one.
There are two of them.
There are two .

This is a man who knows how to GLING,

He 1s GLINGING.

yesterday. What did he do yesterday?

Yesterday he

He did the same thing

18

LING83800 -- S24

Percentage Children

N
(&)}

~
(9)]

(&)
o

wugs

bik's

zibBing

ﬁcked

gléng

54

What about gling and bing?

Aclually, the forms *gling and *bing were included to test for
possible irregular formations. A check of English verbs revealed
that virtnally all in -ing form their past tense irregularly: sing:
sang, ring: rang; cling: clung, and many others. The onely
-ing verbs that form a past tense in -ed are a few poetie forms like
enringed, unkinged, and winged, and onomolopoeias like pinged
and zinged. Adults clearly felt the pull of Lhe irregular pattérn
and 50 % of them said *hang or *bhung for the past tense of *b[nq,
while 75 % made *gling into *glang or "glung in the past. Onl"yt
one child of the 86 interviewed on these items said “hang. One
also said. “glang, and two said *glanged— changing the vowel and
also adding the regular /-d/ for the pasl.

LING83800 -- S24

55

Young c

CO-MISS|

ol

dren make errors of omission, not

A

LING83800 -- S24

56

Percent Correct

1007 Irregular verbs
+
0 4 Overregularization
80 +
707
1 7 1, 0
01 i What that feeled like”?
40 :: Regular
30 1 :
T 2
20 + T
0wt & i i Regularverbs
T iwmiii
0 : W8 3
2,0 2;6 3,0 3:6 4;0 4,6 5;0
Age

Pinker (1995, An invitation to cognitive science)

LING83800 -- S24

57

What’s “good enough”

(I was originally going to walk through the derivation and application of
a particular model for morphological learning in language acquisition
(the Tolerance Principle) but we skipped this due to time

Please see here if you're interested, or come talk to me (Spencer)

https://www.ling.upenn.edu/~ycharles/pop.html

LING83800 -- S24 58

Regularization

LING83800 -- S24

77

Motivations

* All machine learning algorithms (specifically the training algorithms,
the algorithms for learning from data) can be said to be optimizing
some numerical quantity.

E.g., the passive-aggressive learning algorithm (Crammer et al. 2006), a variant
of the perceptron learning algorithm, is an online method for maximizing the
marginy =y - o(F; 0).

Assuming this objective is well-defined, optimizing this objective on the
basis of the training data makes no guarantees about performance on
held-out (e.g., development or test) data.

Intuition behind regularization

Regularization is the set of techniques by which we increase empirical
error (the fit to the training data) to reduce generalization error
(performance on held-out data) and avoid overfitting.

How do we diagnose overfitting? One simple method is as follows:

* Compute resubstitution performance: i.e., apply the model to the training
data and compute the appropriate evaluation metrics

 Compute performance to a random sample of held-out data.

* |f resubstitution performance is substantially better than held-out
performance, overfitting may be occurring.

LING83800 -- S24

79

What does this remind you of?

Smoothing!

The language model smoothing techniques we saw earlier this
semester are regularization strategies specific to the estimation of
Markovian probability distributions used in classical language models.
Laplace smoothing, which we reused for Naive Bayes classifiers, is
another example.

We'll need to use something new for logistic regression, however, since
we don't observe any of the probabilities directly.

Intuition behind regularization

Learning algorithms for logistic regression attempt to minimize the training
data loss €, a quantity closely related to cross-entropy.

To regularize logistic regression, we simultaneously minimize loss and some
other quantity R that is smaller the more "general” the model is.

The trade-off between loss and regularization can be written
min(€ + R/C)

where ﬁis a hyperparameter, and Cis inversely proportional to regularization
strength.

Three types of regularization (1/3)

Intuitively, a parameter of lower magnitude is less "committal” and
therefore will generalize better to unseen data.

In L2 regularization, R is the square root of the sum of squared
parameter values

R=V(B,%+B,%+..)

L2-regularized logistic regression is traditionally known as ridge
regression.

Three types of regularization (2/3)

Just as smaller parameters are "less committal”, parameters whose values
are O are the least committal of all because they can be ignored altogether.

In L1 reqularization, R is the sum of the absolute value of all parameters

R=|B.] + |B2] +...

L1-regularized logistic regression is traditionally known as LASSO regression.

L1 regularization has the effect of causing parameters to go exactly to zeros,
in which case they can be discarded. In other words, it induces sparsity in
parameters.

Three types of regularization (3/3)

Finally, we can use a mixture of L1 and L2 regularization, a formulation
is traditionally known as ElasticNet regression.

See the scikit-learn documentation on ElasticNet regression for a full
breakdown of the ElasticNet hyperparameters.

LING83800 -- S24

84

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html

Alternative regularization strategies

While L1 and L2 regularization techniques are applicable to many ML
models, other models make use of specific regularization tricks.

E.g., the weight averaging (Freund & Schapire 1999) used by the
averaged perceptron has a regularizing effect so long as all weights
are initialized at O (as is standard practice with perceptrons).

E.g., in dropout (Hinton et al. 2012), the parameters of neural
networks are regularized by randomly replacing some parameters
with zero during training.

Tuning hyperparameters

LING83800 -- S24

86

Parameters vs. hyperparameters

The parameters of a model refer to the weights, probabilities, etc. learned
during the training phase.

E.g., in a binary logistic regression, the parameters are given by © = (b, B) where b is
the bias term and |5 is a vector of weights.

The hyperparameters of a model are properties of the model that have to be
set by the experimenter rather than learned directly from data.

Most hyperparameters relate directly to the learning algorithm's behavior
(e.%;, learning rate, regularization coefficients) and cannot be changed
without repeating the training phase.

Hyperparameter tuning
How do we set hyperparameters?
(& use default values in our software package of choice

&) use our prior experience to guess appropriate values

©2 use automatic hyperparameter search

You will achieve better results if your classification task is well-specified
and you use automatic hyperparameter search.

Grid search

In grid search, we specify possible values for each hyperparameter, and
then tune the cross-product of these values.

E.g., if we wanted to tune regularization strength C and the L1 ratio for

an
ElasticNet logistic regression, we might consider

C €[.001, .01, .1, 1, 10, 100]
L1 ratio € [O, .1, .3, .5, .7, .9, 1]

This defines a "grid" containing 6 x 7 = 42 possible pairs of
hyperparameter values.

Random search

In random search (Bergstra & Bengio 2012), we create a random grid of
size k by sampling k possible values from a probability distribution
associated with each hyperparameter.

E.g., instead of specifying seven possible values for the L1 ratio, we
sample possible values for this hyperparameter by drawing k random
samples from the uniform distribution [0, 1].

Black box search

Black box search methods (e.g., Golovin et al. 2017) also work from a
random grid but use clever (often Bayesian) heuristics to speed up

search. This is not yet built into scikit-learn. Some examples of black
box search include:

Google Vizier and its open-source version

Weights & Biases "bayes" sweeping

LING83800 -- S24

91

https://github.com/google/vizier
https://docs.wandb.ai/guides/sweeps/define-sweep-configuration

Automatic tuning with a static split

1. For each element in the grid (whether fixed or random):
a. We train on the training set using those hyperparameters.
. Using the model from (a), we predict labels for the development set.
. Using the predictions from (b), we compute our preferred metric (e.g.,
accuracy) for the development set.

2. Using the best model from (1), we predict labels for the test set.
3. Using the predictions from (2), we compute our preferred metric
(e.g., accuracy) for the test set.

The results obtained in (3) are then reported.

Automatic tuning in scikit-learn (1/4)

scikit-learn does not easily support tuning based on a fixed development set.
Rather, it is designed for tuning via cross-validation (CV).

However, a little hacking is all it takes to tune with a fixed development set...

Let us suppose X refers to encoded features and Y to labels. We begin by
concatenating the train and dev sets' X and Y vectors:

X = numpy.concatenate([x train, x dev])
y = numpy.concatenate([y train, y dev])

LING83800 -- S24 93

Automatic tuning in scikit-learn (2/4)

We then inform scikit-learn about the train/development split.

test fold = numpy.concatenate (

[
numpy.full (x train.shapell], -1),

numpy.full (x dev.shapel[l], 0)

)
cvV =
sklearn.model selection.PredefinedSplit (test fold)

This cv object forces scikit-learn to only use the training set for training and
the development set for tuning.

LING83800 -- S24 94

Automatic tuning in scikit-learn (3/4)

Finally, we construct the hyperparameter grid and pass it to scikit-learn.
grid = {
"c". [.001, .01, .1, 1, 10, 100],
"penalty": ["11", "12"] ,
}

model = sklearn.model select.GridSearchCV (

sklearn.linear model.LogisticRegression(),
grid,
CV=CV
)
model.fit (x, V)

LING83800 -- S24 95

Automatic tuning in scikit-learn (4/4)

The approach for scikit-learn random hyperparameter search looks
quite similar except that the values of your grid dictionary are

probability distributions and you use RandomizedSearchCV instead
of GridSearchCV.

For more information, see:

o the scikit-learn documentation on hyperparameter tuning

o Kyle has a blog post about using fixed training/dev/test set in scikit-
learn

LING83800 -- S24 96

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/grid_search.html
http://www.wellformedness.com/blog/using-a-fixed-training-development-test-split-in-sklearn/
http://www.wellformedness.com/blog/using-a-fixed-training-development-test-split-in-sklearn/

Final notes

* It is essential to use regularization and to tune C to obtain optimal
logistic regression performance

* Though this is a different usage of logistic regressions as common for doing
statistical analysis of experimental or observational data

* Not all logistic regression solvers support all regularization
technigues. The SAGA solver (solver="saga") is the most general
one and works well for large, sparse data sets.

* If you're intending to perform inference using the probability
distribution computed by the model (rather than merely predicting
the best label), setmulti class="multinomial".

e See the detailed user guide for more information.

https://scikit-learn.org/stable/modules/linear_model.html

