
Classification
Regularization

Tuning
LING83800: METHODS IN COMPUTATIONAL LINGUISTICS II

May 13, 2024
Spencer Caplan

Today

1. Features in classification
• Bag-of-words
• TF-iDF

2. Stemming / Lemmatization
3. Human learning for morphology
4. Tuning
• Regularization
• Hyperparameters

LING83800 -- S24 2

Text classification

LING83800 -- S24 3

• An enormous number of tasks in NLP can be framed as a simple
machine learning problem in which one assigns exactly one label
(from a finite set) to each document
• For instance…
• Genre classification
• Abuse detection
• Sentiment analysis
• Spam filtering
• Language ID

Discriminative classifiers (like logistic regression) are highly effective at
this task, and only recently have been surpassed by neural networks.

Words as features

LING83800 -- S24 4

• One of the fundamental issues in text classification is turning
documents into feature vectors

• Up to now we’ve sometimes assumed that features are binary-values
(thus a feature is either present or absent for a given document)

• For text classification problems, we could simply treat every unique
token as a indicator feature.

E.g., if the document contains the token Noriega, we have the feature tuple
 ("Noriega", True)

Bag of words

LING83800 -- S24 5

• We’ve also seen a feature representation where we keep track of how
often a word occurs in a document, which gives us integer-values
features

E.g., if the document contains the token Noriega three times, we have the
 feature tuple ("Noriega", 3)

Since this ignores word order, it is sometimes called a bag of words
model

Bags of words in scikit-learn (1/2)

LING83800 -- S24 6

• Scikit-learn does not force us to extract and encode these word
features ourselves: rather, the process is largely automated by the
CountVectorizer class.

• This class, once instantiated, can be fed (via fit and transform
methods) sentences or documents or even lists of filenames, and can
perform various forms of preprocessing, including…
• Case-folding
• “accent stripping”
• Removal of “stop words”, and
• A crude form of tokenization

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

Bags of words in scikit-learn (2/2)

LING83800 -- S24 7

CountVectorizer can also generate higher-order n-gram features and
filter the feature vocabulary by

• min_df=: document frequency (i.e., require that features occur in
at least k documents),
• max_features=: an overall feature cutoff (i.e., limit itself to the k

most frequent features), or
• vocabulary=: simply use a pre-computed vocabulary of features.

Visualizing count vectors

LING83800 -- S24 8

Term-Document Matrix

LING83800 -- S24 9

D1 D2 D3 D4 D5

abandon

abdicate

abhor

academic

…

zygodactyl

zymurgy

D1 D2 D3 D4 D5

abandon

abdicate

abhor

academic

…

zygodactyl

zymurgy

Each column vector
represents a Document

Term-Document Matrix

LING83800 -- S24 10

D1 D2 D3 D4 D5

abandon

abdicate

abhor

academic

…

zygodactyl

zymurgy

Each row vector
represents a Term

Term-Document Matrix

LING83800 -- S24 11

D1 D2 D3 D4 D5

abandon

abdicate

abhor

academic

…

zygodactyl

zymurgy

The value in a cell is
based on how often that term

occurred in that document

Term-Document Matrix

LING83800 -- S24 12

abandon

abdicate

abhor

academic

…

zygodactyl

zymurgy

The length of the
document vectors
is the s ize of the
vocabulary}

D1 D2 D3 D4 D5

Term-Document Matrix

LING83800 -- S24 13

D1 D2 D3 D4 D5

abandon

abdicate

abhor

academic

…

zygodactyl

zymurgy

Document vectors
can be sparse
(most values are 0)

Term-Document Matrix

LING83800 -- S24 14

D1 D2 D3 D4 D5

abandon

abdicate

abhor

academic

…

zygodactyl

zymurgy

We can measure
how similar two
documents are
by comparing their
column vectors

Term-Document Matrix

15LING83800 -- S24

8 CHAPTER 6 • VECTOR SEMANTICS

6.3 Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. This matrix can be con-
structed in various ways; let’s s begin by looking at one such co-occurrence matrix,
a term-document matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model
represented as a count vector, a column in Fig. 6.3.

To review some basic linear algebra, a vector is, at heart, just a list or arrayvector
of numbers. So As You Like It is represented as the list [1,114,36,20] and Julius
Caesar is represented as the list [7,62,1,2]. A vector space is a collection of vectors,vector space

characterized by their dimension. In the example in Fig. 6.3, the vectors are ofdimension
dimension 4, just so they fit on the page; in real term-document matrices, the vectors
representing each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space is not arbitrary; each position
indicates a meaningful dimension on which the documents can vary. Thus the first
dimension for both these vectors corresponds to the number of times the word battle
occurs, and we can compare each dimension, noting for example that the vectors for
As You Like It and Twelfth Night have similar values (1 and 0, respectively) for the
first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as identifying a point in |V |-dimensional
space; thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-
dimensional spaces are hard to draw in textbooks, Fig. 6.4 shows a visualization in

Each document is represented by a vector of words

Visualizing document vectors

16LING83800 -- S24

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Vectors for information retrieval

17LING83800 -- S24

8 CHAPTER 6 • VECTOR SEMANTICS

6.3 Words and Vectors

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. This matrix can be con-
structed in various ways; let’s s begin by looking at one such co-occurrence matrix,
a term-document matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model
represented as a count vector, a column in Fig. 6.3.

To review some basic linear algebra, a vector is, at heart, just a list or arrayvector
of numbers. So As You Like It is represented as the list [1,114,36,20] and Julius
Caesar is represented as the list [7,62,1,2]. A vector space is a collection of vectors,vector space

characterized by their dimension. In the example in Fig. 6.3, the vectors are ofdimension
dimension 4, just so they fit on the page; in real term-document matrices, the vectors
representing each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space is not arbitrary; each position
indicates a meaningful dimension on which the documents can vary. Thus the first
dimension for both these vectors corresponds to the number of times the word battle
occurs, and we can compare each dimension, noting for example that the vectors for
As You Like It and Twelfth Night have similar values (1 and 0, respectively) for the
first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as identifying a point in |V |-dimensional
space; thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-
dimensional spaces are hard to draw in textbooks, Fig. 6.4 shows a visualization in

Vectors are similar for the two comedies
Different than the history

Comedies have more fools and wit and
fewer battles.

Right but how many dimensions did
we have again?

18LING83800 -- S24

19LING83800 -- S24

Problems with using raw frequency

LING83800 -- S24 20

Frequency is clearly useful!

But nearly all dimensions will have a value of 0 for any given document

And the highly frequent words like the, it, or they actually aren’t very
informative about the content (they’ll appear in nearly every
document)

Need a function that resolves this frequency “paradox”

Intuitions we’d like to capture

LING83800 -- S24 21

• Raw token refrequency is less informative than we’d like

1. Ubiquitous words tend to carry little information...
• ...e.g., they may be syntactically required functional elements rather than

semantically-rich lexical items themselves.

2. Words that occur in many documents/contexts tend to bear less
information than words which occur in few documents/contexts
• e.g., if a document mentions Noriega, it's probably about Noriega too.

Tf-idf: combing two factors

LING83800 -- S24 22

• tf: term frequency. frequency count (usually log-transformed):

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
sio

n
1:

 ‘l
ar

ge
’

Dimension 2: ‘data’

Figure 6.7 A graphical demonstration of cosine similarity, showing vectors for three words
(apricot, digital, and information) in the two dimensional space defined by counts of the
words data and large in the neighborhood. Note that the angle between digital and informa-
tion is smaller than the angle between apricot and information. When two vectors are more
similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the
angle between two vectors is smallest (0�); the cosine of all other angles is less than 1.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
once or twice. Yet words that are too frequent—ubiquitous, like the or good— are
unimportant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): the frequency of the word in theterm frequency

document. Normally we want to downweight the raw frequency a bit, since
a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. So we generally
use the log10 of the frequency, resulting in the following definition for the term
frequency weight:

tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

Thus terms which occur 10 times in a document would have a tf=2, 100 times
in a document tf=3, 1000 times tf=4, and so on.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The document
frequency dft of a term t is simply the number of documents it occurs in. Bydocument

frequency
contrast, the collection frequency of a term is the total number of times the
word appears in the whole collection in any document. Consider in the col-
lection Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies of 113 (they both occur 113 times in all
the plays) but very different document frequencies, since Romeo only occurs
in a single play. If our goal is find documents about the romantic tribulations
of Romeo, the word Romeo should be highly weighted:

Note from the
book:
You could also add
pseudo-count first
instead

Tf-idf: combing two factors

LING83800 -- S24 23

• tf: term frequency. frequency count (usually log-transformed):

• Idf: inverse document frequency: tf-

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

on
 1

: ‘
la

rg
e’

Dimension 2: ‘data’

Figure 6.7 A graphical demonstration of the cosine measure of similarity, showing vectors
for three words (apricot, digital, and information) in the two dimensional space defined by
counts of the words data and large in the neighborhood. Note that the angle between digital
and information is smaller than the angle between apricot and information. When two vectors
are more similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1)
when the angle between two vectors is smallest (0�); the cosine of all other angles is less than
1.

once or twice. Yet words that are too frequent—ubiquitous, like the— are unimpor-
tant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): simply the frequency of theterm frequency

word in the document, although we may also use functions of this frequency
like the log frequency.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The inverse
document frequency or IDF term weight (Sparck Jones, 1972) is one way of

inverse
document
frequency

IDF assigning higher weights to these more discriminative words. IDF is defined
using the fraction N/dfi, where N is the total number of documents in the
collection, and dfi is the number of documents in which term i occurs. The
fewer documents in which a term occurs, the higher this weight. The lowest
weight of 1 is assigned to terms that occur in all the documents. Because of
the large number of documents in many collections, this measure is usually
squashed with a log function.

It’s usually clear what counts as a document: when processing a collection
of encyclopedia articles like Wikipedia, the document is a Wikipedia page; in
processing newspaper articles, the document is a single article. Occasionally
your corpus might not have appropriate document divisions and you might
need to break up the corpus into documents yourself.

The resulting definition for inverse document frequency (IDF) is thus

idfi = log
✓

N
dfi

◆
(6.12)

The tf-idf weighting of the value for word i in document j, wi j thus combinestf-idf

Total # of docs in collection

of docs that have word i

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
sio

n
1:

 ‘l
ar

ge
’

Dimension 2: ‘data’

Figure 6.7 A graphical demonstration of cosine similarity, showing vectors for three words
(apricot, digital, and information) in the two dimensional space defined by counts of the
words data and large in the neighborhood. Note that the angle between digital and informa-
tion is smaller than the angle between apricot and information. When two vectors are more
similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the
angle between two vectors is smallest (0�); the cosine of all other angles is less than 1.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
once or twice. Yet words that are too frequent—ubiquitous, like the or good— are
unimportant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): the frequency of the word in theterm frequency

document. Normally we want to downweight the raw frequency a bit, since
a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. So we generally
use the log10 of the frequency, resulting in the following definition for the term
frequency weight:

tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

Thus terms which occur 10 times in a document would have a tf=2, 100 times
in a document tf=3, 1000 times tf=4, and so on.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The document
frequency dft of a term t is simply the number of documents it occurs in. Bydocument

frequency
contrast, the collection frequency of a term is the total number of times the
word appears in the whole collection in any document. Consider in the col-
lection Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies of 113 (they both occur 113 times in all
the plays) but very different document frequencies, since Romeo only occurs
in a single play. If our goal is find documents about the romantic tribulations
of Romeo, the word Romeo should be highly weighted:

14 CHAPTER 6 • VECTOR SEMANTICS

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf
The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf
term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

tf-idf value for word t in document d:

Tf-idf: combing two factors

LING83800 -- S24 24

• tf: term frequency. frequency count (usually log-transformed):

• Idf: inverse document frequency: tf-

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

on
 1

: ‘
la

rg
e’

Dimension 2: ‘data’

Figure 6.7 A graphical demonstration of the cosine measure of similarity, showing vectors
for three words (apricot, digital, and information) in the two dimensional space defined by
counts of the words data and large in the neighborhood. Note that the angle between digital
and information is smaller than the angle between apricot and information. When two vectors
are more similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1)
when the angle between two vectors is smallest (0�); the cosine of all other angles is less than
1.

once or twice. Yet words that are too frequent—ubiquitous, like the— are unimpor-
tant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): simply the frequency of theterm frequency

word in the document, although we may also use functions of this frequency
like the log frequency.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The inverse
document frequency or IDF term weight (Sparck Jones, 1972) is one way of

inverse
document
frequency

IDF assigning higher weights to these more discriminative words. IDF is defined
using the fraction N/dfi, where N is the total number of documents in the
collection, and dfi is the number of documents in which term i occurs. The
fewer documents in which a term occurs, the higher this weight. The lowest
weight of 1 is assigned to terms that occur in all the documents. Because of
the large number of documents in many collections, this measure is usually
squashed with a log function.

It’s usually clear what counts as a document: when processing a collection
of encyclopedia articles like Wikipedia, the document is a Wikipedia page; in
processing newspaper articles, the document is a single article. Occasionally
your corpus might not have appropriate document divisions and you might
need to break up the corpus into documents yourself.

The resulting definition for inverse document frequency (IDF) is thus

idfi = log
✓

N
dfi

◆
(6.12)

The tf-idf weighting of the value for word i in document j, wi j thus combinestf-idf

Total # of docs in collection

of docs that have word i

14 CHAPTER 6 • VECTOR SEMANTICS

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf
The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf
term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

tf-idf value for word t in document d:

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
sio

n
1:

 ‘l
ar

ge
’

Dimension 2: ‘data’

Figure 6.7 A graphical demonstration of cosine similarity, showing vectors for three words
(apricot, digital, and information) in the two dimensional space defined by counts of the
words data and large in the neighborhood. Note that the angle between digital and informa-
tion is smaller than the angle between apricot and information. When two vectors are more
similar, the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the
angle between two vectors is smallest (0�); the cosine of all other angles is less than 1.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
once or twice. Yet words that are too frequent—ubiquitous, like the or good— are
unimportant. How can we balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) algorithm is the
product of two terms, each term capturing one of these two intuitions:

1. The first is the term frequency (Luhn, 1957): the frequency of the word in theterm frequency

document. Normally we want to downweight the raw frequency a bit, since
a word appearing 100 times in a document doesn’t make that word 100 times
more likely to be relevant to the meaning of the document. So we generally
use the log10 of the frequency, resulting in the following definition for the term
frequency weight:

tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

Thus terms which occur 10 times in a document would have a tf=2, 100 times
in a document tf=3, 1000 times tf=4, and so on.

2. The second factor is used to give a higher weight to words that occur only
in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that
occur frequently across the entire collection aren’t as helpful. The document
frequency dft of a term t is simply the number of documents it occurs in. Bydocument

frequency
contrast, the collection frequency of a term is the total number of times the
word appears in the whole collection in any document. Consider in the col-
lection Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies of 113 (they both occur 113 times in all
the plays) but very different document frequencies, since Romeo only occurs
in a single play. If our goal is find documents about the romantic tribulations
of Romeo, the word Romeo should be highly weighted:

What happens if a
word appears in
every document?

As You Like It Twelfth Night Julius Caesar Henry V

battle (id 1) 1 0 7 13

good (id 2) 114 80 62 89

fool (id 3) 36 58 1 4

wit (id 4) 20 15 2 3

Sparse representation: {"As You Like It": [(1, 1), (2, 114), (3, 36), (4, 20)], ...}

Example (J&M, §6.3)

25

As You Like It Twelfth Night Julius Caesar Henry V

battle (id 1) .07 .00 .22 .28

good (id 2) .00 .00 .00 .00

fool (id 3) .02 .02 .00 .01

wit (id 4) .05 .04 .02 .02

Sparse representation: {"As You Like It": [(1, 1), (2, 114), (3, 36), (4, 20)], ...}

tfidft,d = tft,d ✕ idftExample (J&M, §6.3)

26

TF-IDF weighting in scikit-learn

LING83800 -- S24 27

The TfidfVectorizer class is similar to the CountVectorizer,
but during the fit step, it computes DF statistics, and scales the TFs
during the transform step.

By default, it uses add-one smoothing for the DF counts but you can
disable this with smooth_idf=False.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

Stemming and lemmatization

LING83800 -- S24 28

Morphology and sparsity

LING83800 -- S24 29

• Much early work in computational linguistics treated every unique
word as an atomic element, ignoring the systematic, rule-governed
relationship between words like fish, fisher, and fishing.

• If we've never seen the word fisher (or only seen it a few times) in the
training set, we may have a poor ("high variance") representation of
features involving that word.

• Stemming and lemmatization are two technologies we use to
generalize across morphologically related words.

Lexicon compression

LING83800 -- S24 30

• Personal computers of the 1980s did not have enough memory to
store a reasonably comprehensive lexicon of English (or Japanese)
and engineers were forced to develop compression heuristics.

• This gets a lot worse quickly: English verbs may have as many as six
forms, but verbs in Archi have more than 1.5m unique forms (Kibrik
1998).

LING83800 -- S24 31

Lexicon compression

LING83800 -- S24 32

• Personal computers of the 1980s did not have enough memory to store a
reasonably comprehensive lexicon of English (or Japanese) and engineers
were forced to develop compression heuristics.

• This gets a lot worse quickly: English verbs may have as many as six forms,
but verbs in Archi have more than 1.5m unique forms (Kibrik 1998).

• Perhaps unsurprisingly, one of the most effective heuristics for compressing
a lexicon is to store a list of "stems" and rules to generate inflectional
variants.
• E.g., the MITalk TTS system (the voice behind Stephen Hawking) generates the word

scarcity from stem scarce by appending -ity and deleting a final e.

Stemmers

LING83800 -- S24 33

Generalizing this, Porter (1980) proposes a list of English affix-stripping
rules.

• E.g.: Do you really think it is weakness that yields to temptation? I tell you
that there are terrible temptations which it requires strength, strength

and courage, to yield to?

Stemmers

LING83800 -- S24 34

Generalizing this, Porter (1980) proposes a list of English affix-stripping rules.

• E.g.: Do you really think it is weakness that yields to temptation? I tell you
that there are terrible temptations which it requires strength, strength

and courage, to yield to?

Crucially, the "stems" generated by the Porter stemmer (as this is known)
need not correspond to English words, or to the linguistic notion of the
stem; they just need to form useful, semantically coherent equivalence
classes (e.g., temptat- as a stem shared by temptation and temptations).

Lemmatizers

LING83800 -- S24 35

• A lemma is, roughly, the citation form or head word (the form you
look up in a dictionary) of a word.

• Lemmatizers attempt to map words onto their lemmas, which, in
contrast to the "stems" produced by stemmers, are guaranteed to be
pronounceable wordforms.

Software

LING83800 -- S24 36

● Snowball stemmers are available for roughly 20 languages via
nltk.stem.snowball.

● The WordNet lemmatizer, a knowledge-driven English lemmatizer, is
available via nltk.stem.wordnet.

● Most of the 100 or so languages supported by Universal
Dependencies could be used to train a data-driven lemmatizer using
tools like Morfette or UDPipe.

https://snowballstem.org/
https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://universaldependencies.org/
https://universaldependencies.org/
https://sites.google.com/site/morfetteweb/home
https://ufal.mff.cuni.cz/udpipe

Ambiguity

LING83800 -- S24 37

• Neither stemmers nor knowledge-driven lemmatizers can fully resolve
ambiguity

For instance in Latvian, the wordform ceļu is ambiguous when considered in
isolation:
 it could be an inflected variant for the verb celt (“to lift”)
 or the nouns celis (“knee”) or ceļš (“road”)
Without context the lemmatizer can only guess

Data-driven lemmatizers frame the problem as a tagging task in which
the tags are edit scripts, a set of string rewrite instructions generating a
lemma from the inflected form (e.g., Chrupała 2008, 2014).

Practical / Engineering Tips

LING83800 -- S24 38

● To apply a stemmer or lemmatizer for text classification problems, one may
○ replace all words with their stem/lemma before feature extraction, or
○ extract word features, then augment them with additional features based on

stems/lemmas.

● You usually don't want to display stemmed text to non-specialist end-users,
since they're not guaranteed to be words or even “word-like” units. One simple
solution is to keep track of the most frequent full words associated with each
stem and use those in place of the stems.

● UDPipe 1, available from the command-line or Python, has great sentence
boundary detection, tokenization, and lemmatization in about 60 languages:

udpipe --tokenize --tag en.model inputdata > outputdata

https://ufal.mff.cuni.cz/udpipe/1

Survey of (mostly) English Morphology:
Inflection

LING83800 -- S24 39

stem walk merge try map

-s form walks merges tries maps

-ing principle walking merging trying mapping

Past form or –ed participle walked merged tried mapped

– These regular verbs and forms are significant in the morphology of
English because of their majority and being productive.

stem eat catch cut

-s form eats catches cuts

-ing principle eating catching cutting

Past form ate caught cut

–ed participle eaten caught cut

Morphological
forms of irregular
verbs

Finite-State Morphological Parsing

We need at least the following to build a morphological parser:

1. Lexicon: the list of stems and affixes, together with basic information
about them (Noun stem or Verb stem, etc.)

2. Morphotactics: the model of morpheme ordering that explains which
classes of morphemes can follow other classes of morphemes inside a word.
E.g., the rule that English plural morpheme follows the noun rather than
preceding it.

3. Orthographic rules: these spelling rules are used to model the changes
that occur in a word, usually when two morphemes combine (e.g., the
y→ie spelling rule changes city + -s to cities).

LING83800 -- S24 40

Finite-State Morphological Parsing: Lexicon
and Morphotactics

LING83800 -- S24 41

Reg-verb-stem Irreg-verb-stem Irreg-past-verb past Past-part Pres-part 3sg

walk
fry
talk

cut
speak
sing

caught
ate
eaten

-ed -ed -ing -s

impeach sang
spoken

An FSA for English verbal inflection

• Morphology is not associative: (a + b) + c != a + (b + c)

LING83800 -- S24 42

• non+im+partial, non+il+legible, non+in+frequent

• not im+non+partial, il+non+legible, in+non+frequent

• boor+ish-ness, slav+ish-ness, baboon+ish-ness

• not boor+ish-ity, sla+ish-ity, baboon+ish-ity

• Generally, latinate (in-, -ity, -ic, -al, ...) suffixes must be used before
native ones (un-, non-, -ness, -ish, -hood)

LING83800 -- S24 43

Representation requires learning

• FSAs, FSTs, CFGs….

….They provide a way to represent and parse morphological structure,
but where does the capacity for those representations come from?

We need to actually acquire morphological rules from the input!

LING83800 -- S24 44

Big data not enough for a big problem

LING83800 -- S24 45

Corpus Tokens
(millions)

Infl. cat-
egories

Max. infl.
categories per

lemma

Max. sat-
uration

Brown Corpus 1.2 6 6 100.0

Wall Street Journal Corpus 1.3 6 6 100.0

Basque 0.6 22 16 72.7

Czech 2.0 72 41 56.9

Finnish 2.1 365 147 40.3

Greek 2.8 83 45 54.2

Hungarian 1.2 76 48 63.2

Hebrew 2.5 33 23 69.7

Slovene 2.4 32 24 75.0

Spanish 2.6 51 34 66.7

Swedish 1.0 21 14 66.7

Catalan 1.7 45 33 73.3

Italian 1.4 55 47 85.5

CHILDES Spanish 1.4 55 46 83.6

CHILDES Catalan 0.3 39 27 69.2

CHILDES Italian 0.3 49 31 63.3

Fighting your inner Ralph Wiggum

• Kids eventually learn productivity
categorically

• What can we learn about the path
that brings them there?

• In particular, let’s look at a scheme
for evaluating rule productivity
• Rather than inducing where the

hypotheses come from

LING83800 -- S24 46

Some morphological errors in the wild

• The flatter (referring to the rolling pin; 2;7).

• She and Jenny took the sounder off with the needle (referring
to an LP record; 4;6).

• But you really call it the Darth Vader collection caser (referring
to a container; 4;2)

• It always sweats me. That sweater is a hot sweaty sweater
(referring to the causer of sweating; 4;3)

LING83800 -- S24 47

Words and Rules

LING83800 -- S24 48

Optimizing an objective function (e.g. in NNs, for
MLE, etc) can only reduce the training error

LING83800 -- S24 49

A “clean” function

A trick function

y = x2 except for a
random subset, y=100

LING83800 -- S24 50

A “clean” function

A trick function

y = x2 except for a
random subset, y=100English past tense

some are regular
a random set are irregular

Optimizing an objective function (e.g. in NNs, for
MLE, etc) can only reduce the training error

Rules and Exceptions

How to represent the following mapping:
(2,4), (3,4), (4,8), (5,10), (6,7), (7,8), (8,16)

• Could do it rote (memorize all the pairs)
• Could do it by rules:
• y=x+1: 3, 6, 7
• y=2x: 2, 4, 5, 8

• Either solution involves some kind of memorization of an arbitrary
list, but they differ in how that memorization occurs

LING83800 -- S24 51

Do we need to memorize anything?

• What if we had a bunch of rules in competition?

• catch, buy, think, bring, seek, teach
• hit, slit, split, quit, bid vs. sit, spit

Feels like this should there’d be a competition between these
“analogy” classes and the “add -ed” rule – then we won’t need to
memorize any words
• Just look at the pronunciation each time and decide

LING83800 -- S24 52

Do we need to memorize anything?

Feels like this should there’d be a competition between these
“analogy” classes and the “add -ed” rule – then we won’t need to
memorize any words
• Just look at the pronunciation each time and decide

LING83800 -- S24 53

Several reasons why that’s not the case:
• Children do not over-irregularize (either naturally or in experiments)
• English has not gained a new irregular verb in the last 200 years

Sub-parts of the wug test

LING83800 -- S24 54

What about gling and bing?

LING83800 -- S24 55

Young children make errors of omission, not
co-mission

LING83800 -- S24 56

LING83800 -- S24 57

(I was originally going to walk through the derivation and application of
a particular model for morphological learning in language acquisition
(the Tolerance Principle) but we skipped this due to time

Please see here if you’re interested, or come talk to me (Spencer)

https://www.ling.upenn.edu/~ycharles/pop.html

LING83800 -- S24 58

What’s “good enough”

Regularization

LING83800 -- S24 77

Motivations

LING83800 -- S24 78

• All machine learning algorithms (specifically the training algorithms,
the algorithms for learning from data) can be said to be optimizing
some numerical quantity.

E.g., the passive-aggressive learning algorithm (Crammer et al. 2006), a variant
of the perceptron learning algorithm, is an online method for maximizing the
margin γ = y · σ(F; θ).

Assuming this objective is well-defined, optimizing this objective on the
basis of the training data makes no guarantees about performance on
held-out (e.g., development or test) data.

Intuition behind regularization

LING83800 -- S24 79

Regularization is the set of techniques by which we increase empirical
error (the fit to the training data) to reduce generalization error
(performance on held-out data) and avoid overfitting.

How do we diagnose overfitting? One simple method is as follows:
• Compute resubstitution performance: i.e., apply the model to the training

data and compute the appropriate evaluation metrics

• Compute performance to a random sample of held-out data.

• If resubstitution performance is substantially better than held-out
performance, overfitting may be occurring.

What does this remind you of?

LING83800 -- S24 80

Smoothing!

The language model smoothing techniques we saw earlier this
semester are regularization strategies specific to the estimation of
Markovian probability distributions used in classical language models.
Laplace smoothing, which we reused for Naïve Bayes classifiers, is
another example.

We'll need to use something new for logistic regression, however, since
we don't observe any of the probabilities directly.

Intuition behind regularization

LING83800 -- S24 81

Learning algorithms for logistic regression attempt to minimize the training
data loss ℓ, a quantity closely related to cross-entropy.

To regularize logistic regression, we simultaneously minimize loss and some
other quantity R that is smaller the more "general" the model is.

The trade-off between loss and regularization can be written
min(ℓ + R/C)

where C is a hyperparameter, and C is inversely proportional to regularization
strength.

Three types of regularization (1/3)

LING83800 -- S24 82

Intuitively, a parameter of lower magnitude is less "committal" and
therefore will generalize better to unseen data.

In L2 regularization, R is the square root of the sum of squared
parameter values

R = √(β1
2 + β2

2 + …)

L2-regularized logistic regression is traditionally known as ridge
regression.

Three types of regularization (2/3)

LING83800 -- S24 83

Just as smaller parameters are "less committal", parameters whose values
are 0 are the least committal of all because they can be ignored altogether.

In L1 regularization, R is the sum of the absolute value of all parameters

R = |β1| + |β2| + …

L1-regularized logistic regression is traditionally known as LASSO regression.

L1 regularization has the effect of causing parameters to go exactly to zeros,
in which case they can be discarded. In other words, it induces sparsity in
parameters.

Three types of regularization (3/3)

LING83800 -- S24 84

Finally, we can use a mixture of L1 and L2 regularization, a formulation
is traditionally known as ElasticNet regression.

See the scikit-learn documentation on ElasticNet regression for a full
breakdown of the ElasticNet hyperparameters.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html

Alternative regularization strategies

LING83800 -- S24 85

While L1 and L2 regularization techniques are applicable to many ML
models, other models make use of specific regularization tricks.

E.g., the weight averaging (Freund & Schapire 1999) used by the
averaged perceptron has a regularizing effect so long as all weights
are initialized at 0 (as is standard practice with perceptrons).

E.g., in dropout (Hinton et al. 2012), the parameters of neural
networks are regularized by randomly replacing some parameters
with zero during training.

Tuning hyperparameters

LING83800 -- S24 86

Parameters vs. hyperparameters

LING83800 -- S24 87

The parameters of a model refer to the weights, probabilities, etc. learned
during the training phase.

E.g., in a binary logistic regression, the parameters are given by Θ = (b, ꞵ) where b is
the bias term and ꞵ is a vector of weights.

The hyperparameters of a model are properties of the model that have to be
set by the experimenter rather than learned directly from data.

Most hyperparameters relate directly to the learning algorithm's behavior
(e.g., learning rate, regularization coefficients) and cannot be changed
without repeating the training phase.

Hyperparameter tuning

LING83800 -- S24 88

How do we set hyperparameters?

• 😱 use default values in our software package of choice
• 🧐 use our prior experience to guess appropriate values
• 🤓 use automatic hyperparameter search

You will achieve better results if your classification task is well-specified
and you use automatic hyperparameter search.

Grid search

LING83800 -- S24 89

In grid search, we specify possible values for each hyperparameter, and
then tune the cross-product of these values.

E.g., if we wanted to tune regularization strength C and the L1 ratio for
an
 ElasticNet logistic regression, we might consider

 C ∈ [.001, .01, .1, 1, 10, 100]
 L1 ratio ∈ [0, .1, .3, .5, .7, .9, 1]

This defines a "grid" containing 6 x 7 = 42 possible pairs of
hyperparameter values.

Random search

LING83800 -- S24 90

In random search (Bergstra & Bengio 2012), we create a random grid of
size k by sampling k possible values from a probability distribution
associated with each hyperparameter.

E.g., instead of specifying seven possible values for the L1 ratio, we
sample possible values for this hyperparameter by drawing k random
samples from the uniform distribution [0, 1].

Black box search

LING83800 -- S24 91

Black box search methods (e.g., Golovin et al. 2017) also work from a
random grid but use clever (often Bayesian) heuristics to speed up
search. This is not yet built into scikit-learn. Some examples of black
box search include:

• Google Vizier and its open-source version

• Weights & Biases "bayes" sweeping

https://github.com/google/vizier
https://docs.wandb.ai/guides/sweeps/define-sweep-configuration

Automatic tuning with a static split

LING83800 -- S24 92

1. For each element in the grid (whether fixed or random):
a. We train on the training set using those hyperparameters.
b. Using the model from (a), we predict labels for the development set.
c. Using the predictions from (b), we compute our preferred metric (e.g.,

accuracy) for the development set.
2. Using the best model from (1), we predict labels for the test set.
3. Using the predictions from (2), we compute our preferred metric

(e.g., accuracy) for the test set.

The results obtained in (3) are then reported.

Automatic tuning in scikit-learn (1/4)

LING83800 -- S24 93

scikit-learn does not easily support tuning based on a fixed development set.
Rather, it is designed for tuning via cross-validation (CV).

However, a little hacking is all it takes to tune with a fixed development set...

Let us suppose X refers to encoded features and Y to labels. We begin by
concatenating the train and dev sets' X and Y vectors:

 x = numpy.concatenate([x_train, x_dev])
 y = numpy.concatenate([y_train, y_dev])

Automatic tuning in scikit-learn (2/4)

LING83800 -- S24 94

We then inform scikit-learn about the train/development split.

 test_fold = numpy.concatenate(
 [
 numpy.full(x_train.shape[1], -1),
 numpy.full(x_dev.shape[1], 0)
]
)
 cv =
sklearn.model_selection.PredefinedSplit(test_fold)

This cv object forces scikit-learn to only use the training set for training and
the development set for tuning.

Automatic tuning in scikit-learn (3/4)

LING83800 -- S24 95

Finally, we construct the hyperparameter grid and pass it to scikit-learn.
 grid = {
 "C": [.001, .01, .1, 1, 10, 100],
 "penalty": ["l1", "l2"],
 }
 model = sklearn.model_select.GridSearchCV(

sklearn.linear_model.LogisticRegression(),
 grid,
 cv=cv
)
 model.fit(x, y)

Automatic tuning in scikit-learn (4/4)

LING83800 -- S24 96

The approach for scikit-learn random hyperparameter search looks
quite similar except that the values of your grid dictionary are
probability distributions and you use RandomizedSearchCV instead
of GridSearchCV.

For more information, see:

● the scikit-learn documentation on hyperparameter tuning

● Kyle has a blog post about using fixed training/dev/test set in scikit-
learn

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/grid_search.html
http://www.wellformedness.com/blog/using-a-fixed-training-development-test-split-in-sklearn/
http://www.wellformedness.com/blog/using-a-fixed-training-development-test-split-in-sklearn/

Final notes

LING83800 -- S24 97

• It is essential to use regularization and to tune C to obtain optimal
logistic regression performance
• Though this is a different usage of logistic regressions as common for doing

statistical analysis of experimental or observational data

• Not all logistic regression solvers support all regularization
techniques. The SAGA solver (solver="saga") is the most general
one and works well for large, sparse data sets.
• If you're intending to perform inference using the probability

distribution computed by the model (rather than merely predicting
the best label), set multi_class="multinomial".
• See the detailed user guide for more information.

https://scikit-learn.org/stable/modules/linear_model.html

