
Spring 2024 LING83800 Caplan

Spam Filter From Scratch

1 Naive Bayes

In this assignment, you implement a basic spam
filter using naive Bayes classification.

In this lab, you will implement a minimal system for spam filtering. You will begin by processing
the raw training data (in /data/train-ham/1 and /data/train-spam/). Next, you will proceed by
estimating the conditional probability distributions of the words in the vocabulary determined by each
document class. Lastly, you will use a Naive Bayes model to make predictions on the test set located in
/data/dev-ham/ and /data/dev-spam/.

1.1 load_tokens()

Questions

1. Making use of the email module, write a function load_tokens(email_path) that reads the
email at the specified path, extracts the tokens from its message, and returns them as a list.

Specifically, you should use the email.message_from_file(file_obj) function to create a message
object from the contents of the file, and the email.iterators.body_line_iterator(message) function
to iterate over the lines in the message. Here, tokens are considered to be contiguous substrings of
non-whitespace characters.

>>> ham_dir = "/data/train -ham/"
>>> load_tokens(ham_dir+"ham1")[200:204]
[’of’, ’my’, ’outstanding ’, ’mail’]
>>> load_tokens(ham_dir+"ham2")[110:114]
[’for’, ’Preferences ’, ’-’, "didn’t"]

>>> spam_dir = "/data/train -spam/"
>>> load_tokens(spam_dir+"spam1")[1:5]
[’You’, ’are’, ’receiving ’, ’this’]
>>> load_tokens(spam_dir+"spam2")[:4]
[’<html >’, ’<body >’, ’<center >’, ’<h3>’]

1.2 log_probs()

Questions

2. Write a function log_probs(email_paths, smoothing) that returns a dictionary from the
words contained in the given emails to their Laplace-smoothed log-probabilities.

1Yes, it’s actually called ham!

Page 1

https://en.wiktionary.org/wiki/ham_e-mail

Spring 2024 LING83800 Caplan

Specifically, if the set V denote the vocabulary of words in the emails, then the probabilities should be
computed by taking the logarithms of:

P(w) =
count(w) + α

∑
w′∈V

count(w′) + α|V|
(1)

where w is a word in the vocabulary V and α is the smoothing constant. Be sure to add an <UNK>
token (whose count in the training data is 0) to the vocabulary to handle novel items in the development
and test data.

>>> paths = ["/data/train -ham/ham%d" % i
... for i in range(1, 11)]
>>> p = log_probs(paths , 1e-5)
>>> p["the"]
-3.6080194731874062
>>> p["line"]
-4.272995709320345

>>> paths = ["/data/train -spam/spam%d" % i
... for i in range(1, 11)]
>>> p = log_probs(paths , 1e-5)
>>> p["Credit"]
-5.837004641921745
>>> p["<UNK >"]
-20.34566288044584

1.3 __init__

Questions

3. Write an initialization method __init__(self, spam_dir, ham_dir, smoothing) in the
SpamFilter class that:
(a) creates two log-probability dictionaries corresponding to the emails in the provided

spam and ham directories, then stores them internally for future use.
(b) computes the class probabilities P(spam) and P(¬spam) based on the number of files in

the input directories

1.4 is_spam()

Questions

4. Write a method is_spam(self, email_path) in the SpamFilter class that returns a Boolean
value indicating whether the email at the given file path is predicted to be spam.

Tokens which were not encountered during the training process should be converted into the special
word <UNK> in order to avoid zero probabilities.

Recall from class that for a given class c ∈ {spam,¬spam}:

P(c|document) ≈ P(c) ∏
w∈V

P(w|c)count(w) (2)

Page 2

Spring 2024 LING83800 Caplan

(In principle we should be dividing by the normalization constant P(document) but since it’s the
same for both classes it can safely be ignored). Here the count of a word is computed over the input
document to be classified (not the count in the training data).

Remember: these computations should be done in log-space to avoid underflow.

>>> sf = SpamFilter("/data/train -spam",
... "/data/train/ham", 1e-5)
>>> sf.is_spam("/data/train -spam/spam1")
True
>>> sf.is_spam("/data/train -spam/spam2")
True

>>> sf = SpamFilter("/data/train -spam",
... "/data/train/ham", 1e-5)
>>> sf.is_spam("/data/train -ham/ham1")
False
>>> sf.is_spam("/data/train -ham/ham2")
False

1.5 most_indicative{spam,ham}()

Suppose we define the spam indication value of a word w to be the quantity:

log(
P(w|spam)

P(w)
) (3)

Similarly, we define the ham indication value of a word w to be:

log(
P(w|¬spam)

P(w)
) (4)

Questions

5. Write a pair of methods most_indicative_spam(self, n) and most_indicative_ham(self,
n) in the SpamFilter class which return the n most indicative words for each category,
sorted in descending order based on their indication values. You should restrict the set of
words considered for each method to those which appear in both at least one spam email
and at least one ham email.

Hint: The probabilities computed within the __init__(self, spam_dir, ham_dir, smoothing) method are
sufficient to calculate these quantities.

>>> sf = SpamFilter("/data/train -spam",
... "/data/train -ham", 1e-5)
>>> sf.most_indicative_spam (5)
[’<a’, ’<input ’, ’<html >’, ’<meta’,
’</head >’]

>>> sf = SpamFilter("/data/train -spam",
... "/data/train -ham", 1e-5)
>>> sf.most_indicative_ham (5)
[’Aug’, ’ilug@linux.ie’, ’install ’,
’spam.’, ’Group:’]

Page 3

	Naive Bayes
	load_tokens()
	log_probs()
	__init__
	is_spam()
	most_indicative{spam,ham}()

